
A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

1 of 19 03/17/04 21:43

A unified model for text markup: TEI, Docbook, and
beyond

Keywords: TEI (Text Encoding Initiative), Docbook, Relax NG schema

Sebastian Rahtz
Oxford University Computing Services
Oxford
United Kingdom
sebastian.rahtz@oucs.ox.ac.uk
http://www.oucs.ox.ac.uk/

Biography

Sebastian Rahtz works for Oxford University in IT support as an Information Manager. In his
copious spare work time he is also a member of the Board of Directors and Technical Council
of the Text Encoding Initiative Consortium, manager of the UK JISC-funded Open Source
Advisory Service, a long-time TeX bore, and an open source bigot.

Norman Walsh
Sun Microsystems

USA
ndw@nwalsh.com
http://www.nwalsh.com

Biography

Norman Walsh is an XML Standards Architect in the Web Technologies and Standards group
at Sun Microsystems, Inc. Norm is an active participant in a number of standards efforts
worldwide, including the XML Core and XSL Working Groups of the World Wide Web
Consortium where he is also an elected member of the Technical Architecture Group, the
OASIS RELAX NG Committee, the OASIS Entity Resolution Committee for which he is the
editor, and the OASIS DocBook Technical Committee, which he chairs. He is the principal
author of DocBook: The Definitive Guide, published by O’Reilly & Associates.

Lou Burnard
Oxford University Computing Services
Oxford
United Kingdom
lou.burnard@oucs.ox.ac.uk
http://www.oucs.ox.ac.uk/

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

2 of 19 03/17/04 21:43

Biography

Lou Burnard is co-editor of the Text Encoding Initiative Guidelines, Assistant Director of
Oxford University Computing Services and has been involved in text encoding, linguistic
computing and general humanities computing since the dawn of time.

Abstract

This paper describes the practical steps taken by Docbook and TEI developers to allow for
experimental interleaving of documents, and describes how the TEI literate programming
model for describing schemas also provides a framework to link with other conceptual models,
such as ISO 12620 and CIDOC CRM.

Table of Contents

Introduction

Docbook and TEI development

Docbook/TEI Intersections

Practical examples

 Docbook adding to TEI

 TEI adding to Docbook

 TEI class replacing Docbook class

 Docbook class replacing TEI class

 TEI and Docbook interleaved

Validation of testing

Linking to the wide world

Acknowledgements

Bibliography

Introduction

Ssurprisingly few schemas or DTDs are very widely used in creating textual material. Leaving aside the
proprietary schemas used by some publishers, the three open markup schemes available are HTML,
Docbook and the Text Encoding Initiative Guidelines (TEI); beyond this authors seem to simply invent
their own. Between them the three schemes cover the areas of web pages, technical documentation, and
literary and linguistic material.

There are differences of emphasis between HTML, TEI and Docbook: TEI, for example, was originally
conceived of as a means of representing previously existent documents, rather than creating them from
scratch; HTML was originally intended for use solely as a means of combining and creating digital

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

3 of 19 03/17/04 21:43

resources; Docbook was originally thought of as a publishing DTD, for converting between digital and
print versions of newly authored documents. However, there is also a great deal of overlap in that they
each provide metadata markup, structural markup, and paragraph-level feature markup. Usage of each has
strayed far beyond its original remit, partly because of the inevitable blurring of distinctions between print
and digital forms of distribution which XML has facilitated. Manuscripts for publication may be authored
in HTML or TEI; textual analysis of Docbook documents is feasible. Where once we had programming
language wars, are we now doomed to have document schema wars?

It has been recognised for many years that some areas of markup require specialized vocabularies: two
obvious examples being SVG and MathML. These come cocooned in their own namespaces, and are
(largely) designed to describe terminal nodes (ie one seldom uses other vocabularies within them); it is
thus quite easy to embed them in other languages, using XML namespaces:

and so we can conclude that
<math xmlns="http://www.w3.org/1998/Math/MathML" overflow="scroll">
 <msub>
 <mi>E</mi>
 <mrow>
 <mtext>max</mtext>
 </mrow>
 </msub>
</math>
measures the contribution of the collisions with energy transfer close to…

HTML, TEI, and, Docbook, however, are not really specialised vocabularies: each has aspirations to be a
general vocabulary. Consequently, when we try to merge any one of HTML, Docbook or TEI with any of
the others, it is much harder to a) know at what level markup can be incorporated, and b) at what points
one can return to the outer language. Simple examples would be using TEI elements to mark up a play
inside a Docbook document, or using Docbook elements to describe a GUI inside a TEI document.

The principle customization feature of XML DTDs is the parameter entity. With careful planning,
parameter entities provide a mechanism for sophisticated, structured redefinition of parts of a schema. At
the end of the day, however, parameter entities offer little more than the ability to perform “string
substitutions” on the DTD sources. This presents serious limitations:

Parameter entities are just strings and once defined can never be extended, adjusted, or changed in
any way. (DTDs can declare parameter entities more than once, but only the first declaration
encountered has any effect.)

1.

Parameter entities must be defined before they are used. All of the modules of a DTD must be
arranged so that a single linear pass through the sources encounters the definition of each parameter
entity before its first use.

2.

Parameter entities operate on the DTD at a lexical level. Their definitions must be constructed so
that their replacement text directly satisfies the lexical constraints of the construct where they
occur. There is no underling model upon which they operate.

3.

The limitations of parameter entities are compounded by several limitations inherent in DTDs:

Content models must be unambiguous. From any given token in a content model, it must be
possible to decide if the next token is valid or not without lookahead. One particular consequence
of this rule is that a choice group cannot contain the same element more than once. This means that
you can’t, for example, say that <emphasis> is in both the technical-inlines and the

1.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

4 of 19 03/17/04 21:43

publishing-inlines if there’s a content model somewhere that includes technical-inlines |
publishing-inlines”.
Mixed content must be described by a content model that consists of a single, top-level choice of
repeatable, optional elements. This means that you can’t mix several choices of elements into a
content model that has mixed content.

2.

There’s no indirection. You can’t, for example, indicate that a particular element simply isn’t
allowed. Instead, you have to contrive to explicitly remove it from every element declaration where
it occurs.

3.

In the face of these challenges, providing a customization structure that allowed one to mix the TEI and
DocBook is practically impossible. It might actually be impossible.

In the past couple of years, howevr, Relax NG expressions of both the TEI and DocBook have been
constructed. Neither of these versions are as yet officially adopted standards, but both are developing in
that direction.

Relax NG removes all of the limitations imposed by DTDs: it provides a tree-model in which
customizations can be constructed, it has a pattern mechanism that operates in that model, rather than at
the lexical level, it does not require unambiguous content models, and it imposes no additional constraints
on how mixed content is expressed.

Broadly speaking, the key to Relax NG’s flexibility is the use of patterns. A Relax NG validator
matches the input document against a set of available patterns. If the document matches, it is valid, if it
doesn’t, it isn’t. A pattern can match an element, or a complex structure of elements, or text, or
attributes.

Let’s examine a few features of Relax NG patterns that enable a design that will allow us to mix TEI
and DocBook in sensible ways.

Patterns can be extended. If you’ve declared that a particular pattern matches a choice of emph,
term, or gloss patterns: class.hqphrase = emph | tag | gloss You can still come along later and
add a new pattern, perhaps acronym, to that pattern: class.hqphrase |= acronym The validator will
update the pattern and use this augmented value for validation. This means that different modules
can independently extend and adapt patterns.
There’s a “null” pattern: the notAllowed pattern matches nothing. This means you can define
extension points that are explicitly empty. Other modules can extend or adapt these patterns. In
DocBook, for example, the table pattern is initially defined as “ notAllowed”. It is used
throughout the schema in places where tables are logically allowed. This produces valid patterns,
but ones in which the “ | table” branch will never match anything. If the CALS Table Module
were included in a schema, it might redefine the table pattern to include CALS tables. The HTML
Table Module includes HTML tables. In this way, for example, it is easy to create a customization
layer for DocBook which allows either CALS or HTML tables, or both. DocBook, by default,
allows both.
Patterns are not required to be deterministic. Relaxing this constraint allows us to add elements to
patterns without concern for whether those patterns appear in choice groups elsewhere. By the
same token, we don’t have to worry about how mixed content is constructed.

In the remainder of this paper we explore how the TEI and Docbook projects can help make XML

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

5 of 19 03/17/04 21:43

vocabulary merging easier.

Docbook and TEI development

Both the TEI Consortium (http://www.tei-c.org) and Docbook consortium (http://www.docbook.org/) are
planning to release major new versions in 2004, both based on Relax NG (http://www.relaxng.org) as the
normative model for expressing constraints on the vocabularies. Both schemes make heavy use of
element and attribute classes, which is being increasingly formalized.

As part of this internal reorganisation of both projects, Norm Walsh was asked to take part in the TEI
working party looking at the core markup, and to establish links between the two vocabularies. This paper
is one of the results of this collaboration.

In all the examples in this paper, we use the unpublished and unofficial Relax NG versions of the TEI
(planned release P5) and Docbook (Docbook NG, being developed). These versions are not stable!. It is
likely, for instance, that class names in Docbook will change. There is no guarentee that the examples
given in this paper will still work at the final release, but the basic principles will not change.

The Docbook NG project consists of Relax NG schema modules directly written in the compact syntax.
These make extensive use of the full power of the Relax NG language, and full backward compatibility
with DTDs is not a requirement. The system of classes of elements and attributes is directly expressed
using Relax NG. In the following example, we see how <guibutton> is in the class gui.inlines, which is
in domain.inlines, which is in inlines.

inlines =
 text
 | ubiq.inlines
 | general.inlines
 | domain.inlines
 | extension.inlines
domain.inlines =
 technical.inlines
 | error.inlines
 | os.inlines
 | programming.inlines
 | markup.inlines
 | math.inlines
 | gui.inlines
 | keyboard.inlines
gui.inlines =
 db.guiicon
 | db.guibutton
 | db.guimenuitem
 | db.guimenu
 | db.guisubmenu
 | db.guilabel
 | db.menuchoice
 | db.mousebutton
keyboard.inlines =
 db.keycombo
 | db.keycap
 | db.keycode
 | db.keysym
 | db.shortcut
 | db.accel
db.guibutton =
 element guibutton { guibutton.attlist, (docbook.text | db.accel)* }

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

6 of 19 03/17/04 21:43

The TEI, on the other hand, is authored using a Literate Programming scheme, in which a specialized
vocabulary (itself a module of the TEI) describes a schema, from which runnable schemas or DTDs can
be generated. At the level of the element and attribute content model, it uses Relax NG directly, but the
classes of elements are managed more abstractly. In the following example, <date> is defined as being a
member of the tei.data and tei.date classes, and it can contain elements from the macro.phraseSeq
collection. This expands into a structure comparable to the Docbook example above.

<tagDoc xmlns="http://www.tei-c.org/ns/1.0" id="DATE" usage="opt">
 <ident>date</ident>
 <equiv/>
 <gloss/>
 <classes>
 <memberOf key="tei.data"/>
 <memberOf key="tei.date"/><
 </classes>
 <schemaContent>
 <rng xmlns="http://relaxng.org/ns/structure/1.0" name="macro.phraseSeq"/>
 </schemaContent>
....
</tagDoc>

Docbook/TEI Intersections

TEI and Docbook vocabularies are each in their own namespace. Using Relax NG wrapper schemas, it is
easy to load patterns from both Docbook and TEI, and to judiciously redefine element classes and allow
controlled interleaving of markup. Although RelaxNG patterns are generally in a global namespace, and
thus open to conflict, in practice we have not encountered the issue.

If this is to work, the user needs clearly-defined interchange points. The TEI and Docbook developers can
provide a list of the places where it makes semantic sense to move between languages. It is obvious that
we do not want to allow, for instance, TEI paragraph-level elements to appear in the content models of
Docbook inline elements. But what are ‘paragraphs’? At present it is up to the user to decide which of
the public classes of the TEI (all named with the prefix tei.) and Docbook (not yet so formally named)
can be interleaved, but we can provide some help.

Let us first consider the Docbook inline elements, which make up the great majority of the vocabulary.
The following table shows the high level inline classes:

inlines ubiq.inlines general.inlines domain.inlines extension.inlines

general.inlines publishing.inlines product.inlines bibliography.inlines graphic.inlines
indexing.inlines link.inlines glossary.inlines

domain.inlines technical.inlines error.inlines os.inlines programming.inlines markup.inlines
math.inlines gui.inlines keyboard.inlines

Table 1

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

7 of 19 03/17/04 21:43

The next table shows the elements that these classes are composed of:

technical.inlines db.replaceable db.systemitem db.option db.optional) db.nonterminal

programming.inlines
db.function db.parameter db.varname db.returnvalue db.type db.classname
db.exceptionname db.interfacename db.methodname db.modifier db.initializer
oo.inlines

product.inlines db.productnumber db.productname db.database db.application db.hardware
db.trademark

os.inlines db.prompt db.envar db.filename db.command db.computeroutput db.userinput

markup.inlines db.tag db.markup db.token db.symbol db.literal db.code db.constant db.email

bibliography.inlines db.citation db.citerefentry db.citetitle db.citebiblioid db.author db.personname
db.orgname db.editor

publishing.inlines
db.abbrev db.acronym db.emphasis db.footnote db.footnoteref
db.foreignphrase db.phrase db.quote db.subscript db.superscript
db.wordasword db.coref

math.inlines db.inlineequation

graphic.inlines db.inlinemediaobject

indexing.inlines notAllowed db.indexterm

gui.inlines db.guiicon db.guibutton db.guimenuitem db.guimenu db.guisubmenu
db.guilabel db.menuchoice db.mousebutton

keyboard.inlines db.keycombo db.keycap db.keycode db.keysym db.shortcut db.accel

link.inlines db.xref db.uri db.anchor

Table 2

If we now turn to the TEI, the following table lists the public TEI classes which the user should be able to
override or extend (some obscure or problematic ones have been omitted) in the broad area of inline
markup:

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

8 of 19 03/17/04 21:43

tei.Incl groups empty elements which may appear at any point within a TEI text.

tei.addrPart groups elements which may constitute a postal or other form of address.

tei.agent groups elements which contain names of individuals or corporate bodies.

tei.bibl groups elements containing a bibliographic description.

tei.biblPart groups elements which can appear only within bibliographic citation elements.

tei.complexVal groups elements which express complex feature values in feature structures.

tei.data groups phrase-level elements containing names, dates, numbers, measures, and
similar data.

tei.date groups elements containing a date specifications.

tei.demographic groups elements describing demographic characteristics of the participants in a
linguistic interaction.

tei.edit groups phrase-level elements for simple editorial correction and transcription.

tei.editIncl
groups empty elements which perform a specifically editorial function, for
example by indicating the start of a span of text added, deleted, or missing in a
source.

tei.fragmentary groups elements which mark the beginning or ending of a fragmentary manuscript
or other witness.

tei.hqinter groups elements related to highlighting which can appear either within or between
chunk-level elements.

tei.hqphrase groups phrase-level elements related to highlighting.

tei.lists groups all list-like elements.

tei.loc groups elements used for purposes of location and reference

tei.metadata
groups empty elements which describe the status of other elements, for example
by holding groups of links or of abstract interpretations, or by providing
indications of certainty etc., and which may appear at any point in a document.

tei.notes groups all note-like elements.

tei.personPart groups those elements which form part of a personal name.

tei.phrase groups those elements which can occur at the level of individual words or phrases.

tei.placePart groups those elements which form part of a place name.

tei.refsys groups milestone-style elements used to represent reference systems

tei.seg groups elements used for arbitrary segmentation.

tei.segment groups segmenting elements.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

9 of 19 03/17/04 21:43

tei.singleVal group elements which express single feature values in feature structures.

tei.stageDirection groups elements containing specialized stage directions defined in the additional
tag set for performance texts.

tei.temporalExpr groups component elements of temporal expressions involving dates and time, and
defines an additional set of attributes common to them.

tei.tpParts groups those elements which can occur as direct constituents of a title page (
<docTitle> , <docAuth> , <docImprint> , <epigraph> , etc.)

Table 3

The second broad classification is of block-level structural elements. In Docbook this is covered by a
clean set of public classes:

blocks blocks.nopara para.blocks

blocks.nopara list.blocks admonition.blocks formal.blocks informal.blocks publishing.blocks
graphic.blocks technical.blocks verbatim.blocks synopsis.blocks

admonition.blocks

extension.blocks

formal.blocks

graphic.blocks

informal.blocks

list.blocks

para.blocks

publishing.blocks

synopsis.blocks

technical.blocks

verbatim.blocks

Table 4

The TEI’s class system is rather different from this, in that it classifies elements as much by their
structural properties as by their semantics. In general, however, the TEI classes described earlier in the
inline section are more flexible than the comparable Docbook ones, as they can often occur in both inline

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

10 of 19 03/17/04 21:43

and block-level contexts.

tei.common This class defines the set of chunk- and inter-level elements available in all bases.

tei.divbot groups elements which can occur at the end of a text division; for example, trailer,
byline, etc.

tei.divtop groups elements which can occur at the start of any division class element.

tei.dramafront groups elements which appear at the level of divisions within front or back matter of
performance texts only.

tei.fmchunk groups elements which can occur as direct constituents of front matter, when a full
title page is not given.

tei.front groups elements which appear at the level of divisions within front or back matter.

tei.paragraph The paragraph element, made into a class for the purpose of interchange.

tei.teiText Main element covering the body of a TEI document

Table 5

The last major set of classes is that which describes metadata. In Docbook, this is managed by classes
which describe the metadata attached to a large number of elements:

abstract.info appendix.info article.info audiodata.info
audioobject.info bibliodiv.info bibliography.info bibliolist.info
blockquote.info book.info calloutlist.info cals.informaltable
cals.informaltable.info cals.table.info chapter.info cmdsynopsis.info
colophon.info constraintdef.info dedication.info epigraph.info
equation.info example.info figure.info formalpara.info
funcsynopsis.info glossary.info glossdiv.info glosslist.info
imagedata.info imageobject.info imageobjectco.info index.info
indexdiv.info info.elements informal.blocks informalequation.info
informalexample.info informalfigure.info informaltable.choice
inlinemediaobject.info itemizedlist.info legalnotice.info
mediaobject.info mediaobjectco.info msg.info msgexplan.info
msgmain.info msgrel.info msgset.info msgsub.info orderedlist.info
para.info part.info partintro.info personblurb.info preface.info
procedure.info productionset.info programlistingco.info qandadiv.info
qandaentry.info qandaset.info refentry.info reference.info
refsection.info refsynopsisdiv.info revhistory.info screenco.info
screenshot.info section.info segmentedlist.info set.info setindex.info
sidebar.info simpara.info simplesect.info step.info
stepalternatives.info task.info taskprerequisites.info
taskrelated.info tasksummary.info textdata.info textobject.info
toc.info tocdiv.info variablelist.info videodata.info
videoobject.info

In the TEI, all metadata is (usually) grouped together in a single <teiHeader> element, and referenced by
text elements. Some of the TEI classes which are used in the header are listed next.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

11 of 19 03/17/04 21:43

tei.categorize groups elements which may be used inside <catDesc> and appear multiple times

tei.encoding groups elements which may be used inside encodingDesc and appear multiple times

tei.header groups elements which may be used inside teiHeader and appear multiple times

tei.teiHeader Metadata elements at the top of a TEI document

tei.profile groups elements which may be used inside <profileDesc> and appear multiple times

Table 6

It will be evident from the foregoing discussion that adjoining TEI and Docbook vocabularies is not
entirely straightforward, as there is not a great deal of semantic overlap. The picture is also confused by
the fact that the TEI operates as a series of modules which overload a small number of classes with extra
elements, whereas Docbook tends more to defining new classes in its modular sections.

In our work, we have identified three ways of proceeding. First, the Docbook inline elements can be used
in any of the TEI ‘phrase-like’ situations, and the TEI technical classes can be used alongside
Docbook inlines. Second, the main block-level classes are comparable (eg TEI tei.lists and
list.blocks). Lastly, the highest level Docbook info classes should be interchangeable with TEI’s
<teiHeader>. In the following section we give examples of each of these strategies.

Practical examples

We choose five scenarios to model using a mixture of Docbook and TEI. The aim was not to demonstrate
real-life situations, but to cover four basic operations:

adding an individual element f rom one schema to a class in another scheme1.
replacing a class content model from one schema with that from another2.
extending a class content model with alternatives from another scheme3.
interleaving classes of elements from both schemes4.

In these examples, we show the XML document we want to validate, and the schema in Relax NG
compact form. It is assumed that the reader is moderately familiar with Docbook, TEI and Relax NG
vocabulary. Thee basic technique used is to extend or replace an existing class; in RelaxNG, a class is
implented as a pattern containing a choice. Thus we can group <para>, <quote> and <list> by defining a
pattern blocks as follows:

blocks = para | quote | lists

We can then add another choice to the class by writing

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

12 of 19 03/17/04 21:43

blocks |= speech

So any reference to blocks now means para | quote | lists | speech.

Docbook adding to TEI

A TEI document uses the Docbook <qandaset> element inside sections to ask a basic question:

<div>
<head>In normal TEI mode </head>

<p>Marley was dead: to begin with. There is no doubt whatever
about that. The register of his burial was signed by the
clergyman, the clerk, the undertaker, and the chief mourner.
Scrooge signed it. And Scrooge’s name was good upon ’Change,
for anything he chose to put his hand to. Old Marley was as
dead as a door-nail.</p>
</div>

<div>
<head>Docbook QandA example</head>

<qandaset xmlns="http://docbook.org/docbook-ng" >
<qandaentry>
<question>
<para>
To be, or not to be?
</para>
</question>
<answer>
<para>
That is the question.
</para>
</answer>
</qandaentry>
</qandaset>

The need here is to explicitly add the Docbook <qandaset> element to the TEI lists class. We load the
default TEI core tagsets, and all of Docbook. It is also necessary to override the Docbook default starting
elements, as the master scheme here is TEI.

default namespace = "http://www.tei-c.org/ns/1.0"
include "teilib.rnc" {
 tei.lists |= db.qandaset
 }
include "docbook.rnc" {
 start |= TEI
}

TEI adding to Docbook

A Docbook document uses the TEI play markup to embed portions of Hamlet:

<article
 xmlns:tei="http://www.tei-c.org/ns/1.0"
 xmlns="http://docbook.org/docbook-ng"
 version="bourbon">
...
 <section><info><title>And now for something completely
 different</title></info>
 <tei:stage type="setting"> Elsinore. A platform before the castle.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

13 of 19 03/17/04 21:43

 FRANCISCO at his post.</tei:stage>

<tei:stage type="entrance"> Enter to him BERNARDO. </tei:stage>

<tei:sp who="Barnardo"><tei:speaker>Bernardo</tei:speaker>
 <tei:l part="Y">Who’s there? </tei:l>
</tei:sp>

<tei:sp who="Francisco"><tei:speaker>Francisco</tei:speaker>
 <tei:l >Nay, answer me: stand, and unfold yourself. </tei:l>
</tei:sp>

<tei:sp who="Barnardo"><tei:speaker>Bernardo</tei:speaker>
 <tei:l part="Y">Long live the king! </tei:l>
</tei:sp>
 </section>
</article>

Here the master scheme is Docbook; there is no need to override the default start pattern for TEI, as we
load a view of the TEI (teilib.rnc) which is intended for interchange, and has no <start> pattern at all.
The TEI class commmon is extended to allow the Docbook technical.blocks class.

include "docbook.rnc"
include "teilib.rnc"
technical.blocks |= tei.common

TEI class replacing Docbook class

A Docbook document in which the normal metadata header is replaced by a TEI <teiHeader>:

<article
 xmlns="http://docbook.org/docbook-ng"
 version="bourbon">
 <teiHeader xmlns="http://www.tei-c.org/ns/1.0">
 <fileDesc>
 <titleStmt>
 <title>Testing TEI headers inside Docbook</title>
 <author>Sebastian Rahtz and Norman Walsh</author>
 </titleStmt>
 <publicationStmt>
 <p>published by OUCS</p>
 </publicationStmt>
 <sourceDesc>
 <p>written from scratch</p>
 </sourceDesc>
 </fileDesc>
 </teiHeader>
 <section>
 <info><title>Introduction</title></info>

</article>

Again, we simply load Docbook and TEI interchange core; but this time we do not extend an existing
class, but replace it.

include "docbook.rnc" {
 article.info = tei.teiHeader
}
include "teilib.rnc"

Docbook class replacing TEI class

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

14 of 19 03/17/04 21:43

A TEI document in which the normal metadata header is replaced by a Docbook <info>, and MathML is
used in the body of the TEI document:

<TEI xmlns="http://www.tei-c.org/ns/1.0">
 <info xmlns="http://docbook.org/docbook-ng">
 <title>Simulation of Energy Loss Straggling</title>
 <author><personname>
 <surname>Physicist</surname>
 <firstname>Maria</firstname></personname></author>
 <pubdate>2004-03-11</pubdate>
 <copyright>
 <year>1999</year>
 <holder>CERN</holder>
 </copyright>
 </info>
 <text>
<body>
<p>
...can be significantly affected by such fluctuations in their active layers. The
description of ionisation fluctuations is characterised by the significance parameter
<formula notation="MathML">
 <math xmlns="http://www.w3.org/1998/Math/MathML" overflow="scroll">
 <mi> </mi>
 </math>
 </formula>,
....
 </body>
 </text>
</TEI>

This is a much more complex example. First, we declare some namespaces, and load MathML 2 and
Xlink modules (the latter is used internally by MathML)

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace xlink = "http://www.w3.org/1999/xlink"
namespace s = "http://www.ascc.net/xml/schematron"
default namespace = "http://www.tei-c.org/ns/1.0"

include "Schema/xlink.rnc" {}
include "Schema/mathml2-main.rnc"

Next we load Docbook, and override its start pattern:

include "docbook.rnc" {
 start |= TEI
}

Loading the TEI is more complex, as it has several optional modules which we need for this example. In
the core, we overload the existing class for headers with that from Docbook, and in the module which
covers figures and formula, we overload the datatype pattern for formula content with the root MathML
pattern.

include "teilib.rnc" {
 tei.teiHeader = article.info
}
include "Schema/linking.rnc" {}
include "Schema/figures.rnc" {
 datatype.Formula = mathml.math
}

Finally, we create a new element <code> and add it to an existing TEI class.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

15 of 19 03/17/04 21:43

code = element code { code.content }
code.content = code.attributes, text
code.attributes =
 tei.global.attributes,
 attribute type { datatype.Text }?,
 [a:defaultValue = "code"] attribute TEIform { text }?
tei.oddPhr |= code

TEI and Docbook interleaved

A TEI document which allows for Docbook elements for descriting GUIs in inline contexts, and for TEI
structured inline elements to then appear inside the Docbook GUI elements

<TEI xmlns="http://www.tei-c.org/ns/1.0"
 xmlns:dbk="http://docbook.org/docbook-ng">
....
 <text>
 <body>
<p>The button on our web page has the current date on it:
<dbk:guibutton>
 <date calendar="Julian" value="1732-02-22">Feb. 11, 1731/32, O.S.</date>
</dbk:guibutton>

or at least the date on which we last updated it.</p>
 </body>
 </text>
</TEI>

This final example is deceptively simple, but very powerful. We tell the TEI that it can use the Docbook
gui.inlines class in with its normal phrase-level elements, and tell Docbook that it can use the TEI class
data in its phrase-level class.

include "teilib.rnc" {
 tei.hqphrase |= gui.inlines
 }
include "docbook.rnc" {
 docbook.text |= tei.data
 start = TEI
}

Validation of testing

The Relax NG world is relatively rich in good-quality validators and schema-aware editing tools
(http://www.relaxng.org/#validators), and we have tested our five examples with a variety of the available
software, as follows.

MSV
http://www.sun.com/software/xml/developers/multischema/ - Sun’s multi-schema validator

Jing
http://www.thaiopensource.com/relaxng/jing.html - A Relax NG Validator in Java.

RNV
http://davidashen.net/rnv.html - a Relax NG validator in C (Compact Syntax only)

nxml mode
http://www.thaiopensource.com/download/ - an Emacs mode for editing XML files using Relax

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

16 of 19 03/17/04 21:43

NG
xmllint

http://xmlsoft.org/ - part of the Libxml2 XML C parser and toolkit developed for the Gnome
project

<oXygen/>
http://www.oxygenxml.com - commercial XML editing tool

No unexplained errors were encountered during this informal testing. We may reasonably conclude that
the methodology is sound, and that it can serve as a basis for more sophisticated testing in the future.

On a usability level, it may be helpful to look at two screen shots for test 5, in Emacs (Figure 1) and
<oXygen/> (Figure 2). These are traditional XML editors, offering tag prompting and completion, and
may be regarded as typical of their kind.

Figure 1

Mixed Docbook/TEI editing in Emacs

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

17 of 19 03/17/04 21:43

Figure 2

Mixed Docbook/TEI editing in oXygen

We have not yet attempted to use W3C Schema validators on automatically-converted schemas.

Linking to the wide world

Technically, it is not hard to combine vocabularies in different namespaces. Our demonstrations thus far
have been satisfactory, but still remain at the level of informal agreement about semantics of classes. To
go beyond this stage requires us to grasp and resolve problems which are fundamentally linguistic in
nature: how are the meanings of technical terms in different languages related? how do new meanings
emerge? how are meanings transferred between different languages? These are not new problems in the
language research community, and it is reasonable therefore to look to that community for insight into
their solution. There is an interesting synergy between the current fascination within the data processing
community for conceptual modelling tools and ontologies on the one hand, and the growing awareness
within the natural language processing community of the potential of tools such as RDF and XML for
modelling fundamental linguistic structures on the other. The TEI, which has a long history of enabling
linguistic research, is well poised to leverage that synergy.

For example, if both the TEI and Docbook terminologies were mapped to some standard conceptual
model, ‘round-tripping’ between documents in either scheme would be feasible (or at least, its
feasibility would be demonstrable). No such universal conceptual model exists, and previous attempts to
build universal vocabularies have been notoriously unsuccessful. Where we see real scope for progress
however is in the specific area of technical terminology. Current work in ISO/TC 37/SC4 is working
towards the definition of a Linguistic Annotation Framework comprising a number of related standards,
one of which, ISO DIS 12620/1, relates to the definition of Data Category Registries for language
resources. The idea behind this standard is to collect existing linguistic terminology from as many

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

18 of 19 03/17/04 21:43

different fields as possible (term banks, online dictionaries, existing NLP systems etc) and construct a
common concept base, which terminological systems can use to describe the data they hold. By contrast
with other ontologies, such as Wordnet, which specifically exclude technical and specialized vocabulary
since their goal is to model ‘common sensed’ knowledge of the world, the Data Category registry
focuses on the concepts underlying linguistic description itself. As such, it provides the natural place to
look for an interlingua on to which other specialized descriptive vocabularies such as TEI or Docbook can
be mapped.

Other possibilities are offered by standards like the CIDOC Conceptual Reference Model (CRM)
(http://cidoc.ics.forth.gr/), which has been developed as a way of defining a common and extensible
semantic framework within which complex cultural heritage information can be expressed and
interchanged. Systems which have been developed in the context of the CRM can interchange data by
relating the categories used to express it to the CRM’s underlying model, independently of the
terminology used. Again, there is an area of overlap with the concerns of the TEI, since many specialized
TEI elements relate to concepts which are central to the CIDOC CRM.

To take advantage of these, and other possibilities, the TEI has built into its own model the concept of
equivalence at every level. For any element, attribute, value, and class defined in the TEI scheme, an
equivalent concept in some other scheme may be referenced. We plan to continue the work reported here
by identifying and defining such links between a substantial proportion of the concepts defined in the
Docbook, TEI, CIDOC CRM and ISO 12620-1 standards. Amongst the challenges to be addressed will be
finding ways of modelling partial equivalence and subset relations, and also ways of using the
equivalences identified in document-understanding systems.

Acknowledgements

Notes and Acknowledgements

This work was carried out as part of the technical work programme of the Metalanguage Taskforce
(http://www.tei-c.org/Activities/META/) of the TEI Council in 2003/2004. The authors are both members
of this Taskforce. We are greatly indebted to Lou Burnard and Laurent Romary, also on this taskforce, for
important insights into wider linking.

Many thanks are due to David Tolpin, who made fixes to his excellent RNV Relax NG validator at very
short notice, and provided vital support for some of the more complicated parts of the TEI literate
programming process.

Bibliography

[1]
Sebastian Rahtz, Converting to schema: the TEI and RelaxNG, paper presented at XML Europe
2002, Barcelona, May 2002.

A unified model for text markup: TEI, Docbook, and beyond file:///TEI/Talks/2004-04-18-xmleurope/gca/x.html

19 of 19 03/17/04 21:43

XHTML rendition created by gcapaper Web Publisher v2.1, © 2001-3 Schema Software Inc.

[2]
Sebastian Rahtz, Building TEI DTDs and Schemas on demand, paper presented at XML Europe
2003, London, May 2003.

[3]
Association for Computers and the Humanities, Association for Computational Linguistics, and
Association for Literary and Linguistic Computing, Guidelines for Electronic Text Encoding and
Interchange (TEI P4). Ed. C. M. Sperberg-McQueen and Lou Burnard. University of Virginia
Press, 2001.

[4]
N. Walsh and L. Muellner, DocBook The Definitive Guide, O’Reilly, Sebastopol, CA, USA, 1999.

[5]
Donald E. Knuth, Literate Programming, Stanford University Center for the Study of Language
and Information (CSLI Lecture Notes Number 27), Stanford, CA, USA, 1992.

