
ISO TC 37/SC 4 N033 Rev. 3
2004-01-02

Language Resource Management

Descriptors and Mechanisms for Language Resources

File ID SC4N033.doc (479ko)

SC4N033.pdf (286 ko)

Title: Draft - Language Resource Management - Feature Struc-
tures - Part I: Feature Structure Representation

Editor(s): Kiyong Lee

Source: WG1

Project number: 24610-1
- This reference will supersede all previous one and remain attached

as working ref along the duration of the project.

Status: pre-DIS: reviewed by the Korean group of experts

Date: 2004-01-02

Agenda/Action: For review by TEI-ISO joint group

References: WG1 N17; WG1 N23; TEI

Mr. Key-Sun Choi - SC4 Secretary - KORTERM - 373-1
Guseong-dong Yuseong-gu - Daejeon 305-701 - Korea

Tel: +82 42 869 35 25 - Fax: +82 42 869 87 90 - kschoi@cs.kaist.ac.kr -
http://tc37sc4.org

1

Language Resource Management - Feature Structures

Warning

This document is not an ISO International Standard. It is distributed for review and com-
ment. It is subject to change without notice and may not be referred to as an International
Standard. Recipients of this document are invited to submit, with their comments, noti-
fication of any relevant patent rights of which they are aware and to provide supporting
documentation.

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO.
Except as permitted under the applicable laws of the user’s country, neither this ISO draft
nor any extract from it may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, photocopying, recording or otherwise, without prior
written permission being secured. Requests for permission to reproduce should be addressed
to ISO at the address below or ISO’s member body in the country of the requester.

Copyright Manager
ISO Central Secretariat
1 rue de Varembé1211 Geneva 20 Switzerland
Tel. + 41 22 749 0111
Fax + 41 22 749 0947
internet: iso@iso.ch

Reproduction may be subject to royalty payments or a licensing agreement. Violators may
be prosecuted.

2

Language Resource Management - Feature Structures
Part 1: Feature Structure Representation

Table of Contents

Foreword
Introduction
1 Scope
2 Normative References
3 Terms and Definitions
4 General Characteristics of Feature Structure

4.1 Overview
4.2 Use of Feature Structures
4.3 Basic Concepts
4.4 Notations

4.4.1 Graph Notation
4.4.2 Matrix Notation
4.4.3 XML-based Notation

4.5 Structure Sharing
4.5.1 Sharing Underspecified Values
4.6.2 Cyclic Feature Structures

4.6 Multi-valued Features
4.6.1 List-valued Features
4.6.2 Set-valued Features
4.6.3 Multiset-valued Features

4.7 Typed Feature Structure
4.7.1 Types
4.7.2 Definition
4.7.3 Notations

4.8 Type Inheritance Hierarchies
4.8.1 Definition
4.8.2 Multiple Inheritance
4.8.3 Type Constraints

4.9 Relations on Feature Structures and Feature Values
4.9.1 Subsumption
4.9.2 Logical Relations

4.8 Operations on Feature Structures and Feature Values
4.10.1 Unification
4.10.2 Generalization
4.11.3 Concatenation

5 XML-Representation of Feature Structure

3

5.1 Overview
5.2 Elementary Feature Structures: Features with Binary Values [16.2]
5.3 Feature, Feature-Structure, and Feature-Value Libraries [16.3]
5.4 Symbolic, Numeric, Measurement, Rate, and String Values [16.4]
5.5 Structured Values [16.5]
5.6 Singleton, Set, Bag, and List Collections of Values [16.6]
5.7 Alternative Features and Feature Values [16.7]
5.8 Boolean, Default, and Uncertain Values [16.8]
5.9 Indirect Specification of Values Using the Rel Attribute [16.9]

5.9.1 The Not-Equals Relation [16.9.1]
5.9.2 Other Inequality Relations [16.9.2]
5.9.3 Subsumption and Non-Subsumption Relations [16.9.3]
5.9.4 Relations Holding with Sets, Bags, and Lists [16.9.4]
5.9.5 Varieties of Subsumption and Non-Subsumption [16.9.5]

6 Bibliography

Annex A (non-normative): Examples for Illustration
Annex B (normative): Feature Structure DTD
Annex C (informative): Use of Feature Structure in Applications

4

Foreword

(to be filled in)

Introduction

This standard proposal results from the agreement between the Text Encoding Initiative
Consortium and the ISO committee TC 37/SC 4 that a joint activity should take place to
revise the two existing chapters on Feature Structures and Feature Structure Declaration in
the tei guidelines. This work should lead to both a thorough revision of the guidelines and
the production of an ISO standard on Feature Structure Representation and Declaration.

This standard is organized in two separate main parts. The first part is dedicated
to the description of what feature structures are, providing an informal and yet explicit
outline of their basic characteristics, as well as an xml-based structured way of representing
feature structures. This preliminary task is designed to lay a basis for constructing an xml-
based reference format for exchanging feature structures between applications. The second
part aims at providing an implementation standard for XML-based feature structures, first
by formulating constraints on a set of features and a set of their appropriate values and
then by introducing a set of wellformedness conditions on feature structures for particular
applications, especially related to the goal of language resource management.

1 Scope

Feature structures are an essential part of many linguistic formalisms as well as an underly-
ing mechanism for representing the information consumed or produced by and for language
engineering components. This international standard provides a format to represent, store
or exchange feature structures in natural language applications, both for the purpose of
annotation or production of linguistic data. It also provides a computer format to describe
the constraints that bear on a set of features, feature values, feature specifications and op-
erations on feature structures, thus offering means to check the conformance of each feature
structure with regards to a reference specification.

2 Normative References

To be checked by LR

ISO/IEC 639, Information technology – ISO 639: 1988, Code for the representation of
names of languages.

ISO 639-2: 1998, Code for the representation of names and languages – part 2: Alpha-3
code.

ISO/IEC 646: 1991, Information technology – ISO 7-bit coded character set for information
interchange.

5

ISO 3166-1: 1997, Code for the representation of names of countries and their subdivisions
– Part 1: Country codes

ISO 8601: 1988, Data elements and interchange formats - Information interchange – Rep-
resentation of dates and times.

ISO 8879: 1986 (SGML) as extended by TC2 (ISO/IEC JTC 1/SC 34 N 029: 1998-12-06)
to allow for XML.

ISO/IEC 10646-1: 2000, Information technology - Universal Multiple-Octet Coded Char-
acter Set (UCS) – Part 1: Architecture and basic multilingual plane.

ISO 12620, Computer applications in terminology – Data categories.

Erjavec: Lou complains that the TEI is not in the bibliography. But

shouldn’t it actually be in this section, as the normative part frequently

refers to it?

Also, why is ISO 3166 (names of countries) needed?

3 Terms and Definitions

KATS: The current list of terms listed here is restricted to those in

Section 4. It should be augmented with key terms in other sections,

especially Section 5.

3.1 atomic value

In a feature structure, the value of each feature is either atomic or complex. An atomic
value is some primitive type of object without internal structure. See complex value.

3.2 attribute-value matrix

avm

a very common notation in a matrix form which represents a feature structure consisting
of pairs of an attribute, namely feature, and its value
Note: The acronym avm stands for “Attribute-Value Matrix” where each row represents a
pair of a feature and its value, separated by a colon (:), space () or the equality sign (=).

3.3 boxed integer

integer in a box like 1 which is used for marking structure sharing in an avm

Note: The index need not be an integer, but can be any alpha-numeric symbol that can be
used as a coreferential index.

6

3.4 compatibility

Two feature structures are compatible if and only if none of the features that they have in
common has a conflicting value. On the other hand, two incompatible feature structures
contain at least one identical feature which has a conflicting value.

3.5 complex value

The value of a feature in a feature structure can be complex. The complex value is normally
a feature structure, thus making a feature structure contain another feature structure within
itself in a recursive manner. It can, however, be a list, a set or a bag for some extensions.

3.6 directed acyclic graph

dag

graph on which each node, except for the terminal ones, points to other nodes or at least
one other node, but it disallows any path or any of its segments that points to itself
Note: A feature structure is often represented by a dag.

3.7 empty path, the

path corresponding to the root node of a graph which represents the empty feature structure
without any feature specification
Note: It is represented as a single dot, possibly labelled with the name of a type, on a
graph. It may also be represented as [] or [τ] labelled with the name of a type τ in the
avm notation.

3.8 feature

attribute or property of an object being described
Note: By taking an appropriate value for the described object, it constitutes part of a
feature structure.

3.9 feature specification

assignment of a particular value to a feature in a feature structure

3.10 feature structure

a set of feature specifications which carry partial information about some object being
described by assigning a value to each of its features
Note: The feature structure is defined in set-theoretic terms as a partial function from
features to values.

3.11 identity element

The empty feature structure is an identity element of the operation called unification on
feature structures, since it yields the identical result when unified with any other feature
structure just as the number 0 is an identity element for the algebraic operation called
addition on natural numbers.

7

3.12 graph notation

A single-rooted, labelled and directed graph is often used to represent a feature structure.
Each graph representing a feature structure starts with a particular single node called the

root. From the root, more than one arcs, each of which is labelled with the name of a
feature, may branch out to other nodes. These nodes may each terminate with an atomic
value or some of them may again branch out to other nodes. For a typed feature structure,
each node including the root is labelled with the name of a type.

3.13 multiple inheritance

3.14 path

sequence of feature names which label each of the arcs in a descending order from the root
on the graph notation
The notion of path can also be extended in the same manner to other notations.

3.15 reentrancy

structure sharing in a feature structure
It may be represented in the graph notation as two or more paths pointing to the same
node. These paths are then called equivalent, having the same value. As a result, these two
or more paths leading to that intersecting node share their values. In the avm notation,
reentrancy is conventionally marked by a boxed integer or alphabetic symbol like 3 by
tagging it to the left of the feature structure or the type name of that node and also at
the place of the value being shared by the other paths without copying the shared feature
structure or feature value. See shared value.

3.16 root, the

topmost node on a graph or an (upside-down) tree that has no ancestors

3.17 shared value

feature value shared by two or more features in a feature structure
In graph notation, a node to which two or more paths merge represents the value shared
by the paths. In matrix notation, the shared value is represented by an identical boxed
alpha-numeric index. See reentrancy.

3.18 subsumption

a reflexive, symmetric and transitive relation between two feature structures
A feature structure A is said to subsume a feature structure B, formally represented as A v
B, if A is not more informative than B, or A contains a subset of the feature specifications
in B.

3.19 type

Elements of any domain can be sorted into some classes in a structured way, based on
similarities of properties. These classes are called “types”.

8

Note: In linguistics, for instance, class names like phrase, word, pos (parts of speech), noun,
and verb are often taken as types.

3.20 typed feature structure

feature structure that is labelled by the name of a type
In the graph notation, each node on a graph is labelled with the name of a type.

3.21 type inheritance hierarchy

Types are ordered in some hierarchical order so that objects of a lower type inherit proper-
ties of their super-types. In linguistics, these hierarchies are often used to organize linguistic
descriptions, especially lexical information.

3.22 unification

a binary operation on feature structures that combine two compatible feature structures
into one representing exactly all the information contained in the feature structures being
unified

4 General Characteristics of Feature Structure

4.1 Overview

A feature structure is a general-purpose data structure that identifies and groups together
individual features by assigning a particular value to each of them. Because of the generality
of feature structures, they can be used to represent many different kinds of information.
Interrelations among various pieces of information and their instantiation in markup provide
a metalanguage for representing linguistic content analysis and interpretation. Moreover,
this instantiation allows a specification of a set of features with values to be of specific
types, and also a set of restrictions to be placed on the values for particular features, by
means of feature system declarations, which are properly discussed in the second part of
this standard. Such restrictions provide the basis for at least partial validation of the
feature-structure encodings that are used.1

4.2 Use of Feature Structures

Feature structures may be understood as providing partial information about some object
which is described by specifying values of some of its features. Suppose we are describing a
female employee named Sandy Jones who is 30 years old. We can then talk about at least
that person’s sex, name and age in a succinct manner by assigning a value to each of these
three features of hers. These pieces of information can be put into a simple set notation,
as in:

(1) About an employee
{<sex, female>, <name, Sandy Jones>, <age, 30>}

1See illustration examples in non-normative Annex A.

9

The use of feature structures can easily be extended to linguistic descriptions, too.
The phoneme /p/ in English, for instance, can be analyzed as a complex of its distinctive
features. It can be partially described as a consonantal, anterior, voiceless, non-continuant
or stop sound segment. By introducing the boolean values plus(+) and minus(-), these
features can then be listed as a set consisting of pairs of a feature and its value:

(2) Distinctive features of the sound segment /p/
{<consonantal, + >, <anterior, + >, <voiced, - >, <continuant, - >}

As a result, it can be distinguished from other phonemes exactly in what aspect they are
different from each other. It differs from the phoneme /b/ in voicing, while it differs
from the phoneme /k/ in their articulatory positions: one is articulated at the anterior,
namely lips of the mouth and the other at the non-anterior part, namely back of the oral
cavity.

This feature analysis can be extended to the description of other linguistic entities or
structures. Consider the verb like ‘love’. Its features can be divided into syntactic and
semantic properties: as a transitive verb, it takes an object as well as a subject as its argu-
ments, expressing the semantic relation of loving between two persons or animate beings.
The exact representation of these feature specifications requires a detailed elaboration of
what feature structures are. For now, we can roughly represent these grammatical features
in a set format like the following:

(3) Grammatical features of the verb ‘love’
{<pos, verb>, <valence, transitive>, <semantic relation, loving>}

Since its first extensive use in generative phonology in mid-60’s, a feature structure has
become an essential tool not only for phonology, but also for doing syntax and semantics
as well as building lexicons, especially related to computational work. Feature structures
are used to describe and model linguistic entities and phenomena by analyzing them as
complexes of their properties. For this purpose, it is considered necessary to specify some
of the formal properties of feature structures and ways of representing them in a systematic
manner.

4.3 Basic Concepts

Feature structures may be viewed in a variety of ways. The most common and perhaps the
most intuitive way is to view them in one of the following ways:

• (i) sets of feature specifications that consist of pairs of features and their values

• (ii) labelled directed graphs with a single root where each arc is labelled with the name
of a feature and directed to its value.

In set-theoretic terms, a feature structure FS can thus be defined as a partial function

from a set Feat of features to a set FeatVal of values, where FeatVal consists of a set
AtomVal of atomic values and a set FS of feature structures.

10

(4) Feature structure as a set or partial function

FS ⊆ {< F i , vi > |F i ∈ Feat, vi ∈ FeatVal}
or
FS : Feat −→ FeatVal,
where FeatVal = AtomVal ∪ FS.

In a feature structure, feature values are either atomic or complex. Atomic values are
linguistic entities without internal structure, while complex values are themselves feature
structures.

Here is a linguistic example. The part of speech feature, abbreviated as pos, takes the
name of an atomic category like verb as value. The agreement feature agr in English, on
the other hand, takes a complex value in the form of a feature structure where the features
person and number are appropriately specified. The word ‘love’, for instance, is here
analyzed as having the value of its pos feature specified as verb and the value of its agr

feature specified by a feature structure consisting of two feature specifications: one specifies
the value of person with 3rd and the other, the value of number with singular.

4.4 Notations

As has been shown, a feature structure does not simply list feature specifications. It can
recursively embed another feature structure into itself because some of the features take
featur structures as values. Hence, to represent these complex feature structures in a manner
easy to understand, clear and exact notations are necessary.

Just as the notion of feature structures may be conceived in different ways, there are
a few different ways of representing them. Here are the three notations that are most
commonly used: a graph, a matrix and an xml-based notation. Graphs are for mathemat-
ical discourses, matrices for linguistic descriptions, and xml notations for computational
implementation.

4.4.1 Graph Notation

For conceptual coherence and mathematical elegance, feature structures are often repre-
sented as labelled directed graphs with a single root.2

Each graph starts with a single particular node called the root. From this root, any
number of arcs may branch out to other nodes and then some of them may terminate or
extend to other nodes. The extension of directed arcs must, however, stop at some terminal
nodes. On such a graph which is representing a feature structure, each arc is labelled with
a feature name and its directed node, labelled with its value.

Here is a very simple example for a directed graph representing a feature structure.

(5) Feature structure in graph notation

2This graph can be either (1) acyclic, thus allowing the acronym dag for feature structures or (2)cyclic
for handling cases like the Liar’s paradox.
dags are of course by definition not cyclical. And feature structures are usually represented as dags;
but there have been some suggestions that cyclical feature structures should be introduced to model some
linguistic phenomena.

11

feature1 value1

•
feature2

value2

feature3 feature31 value31

•
feature32 value31

In this graph, the two features feature1 and feature2 are atomic-valued, taking value1

and value2 on the terminal nodes respectively as their value. The feature feature3 is,
however, complex-valued, for it takes as its value the feature structure which is repre-
sented by the two arcs feature31 and feature32 with their respective values, value31

and value32 .

A graph may just consist of the root node only, that is, without any branching arcs.
Such a graph represents the empty feature structure.

From the root, more than one arcs may branch out and each of them forms a sequence
of feature names of length 1. Here, each sequence consists of a single feature name. Some
of these labelled arcs originating from the root may again stretch out to another node and
then from this node to another, forming an indefinitely long sequence of feature names.
Such a sequence of feature names, labelling the arcs from the unique root node to each of
the terminal nodes on a graph, is called path. For example, there are four paths in (5):
feature1 , feature2 , feature3 .feature31 and feature3 .feature32 .

Here is a linguistically more relevant example.

(6) Linguistic example in graph notation

‘love’

orth

verbpos

• •syntax

valence transitive

This graph consists of three paths: orth, syntax.pos, and syntax.valence. The
path consisting of a single feature name orth is directed to the terminal node ‘love’, which
is an atomic value. The path syntax.pos terminates with the atomic value verb and the
path syntax.valence with the atomic value transitive. The non-terminal feature syntax

takes a complex value, namely a feature structure consisting of the two feature specifications,
<pos, verb> and <valence, transitive>.

4.4.2 Matrix Notation

Despite its mathematical elegance, graphs cause problems of typesetting and readability
when they get complex. To remedy some of these problems, feature structures are more
often depicted in a matrix notation called attribute-value matrix, or simply avm.3

3The term ‘feature’ is sometimes called attribute.

12

(7) Matrix notation


































feature1 value1

feature2 value2

feature3













feature31 value31

feature32 value32

. . .

feature3k value3k













. . .

featuren valuen



































Each row in the square bracket with a feature name followed by its value name represents a
feature specification in a feature structure.4 Feature values can be either atomic or complex.
Each row with an atomic value terminates at that value. But if the value is complex, then
that row leads to another feature structure, as in the case of feature3 above.

The notion of path is also important in the avm notation for its applications that will
be discussed presently. A path in an avm is a sequence of feature names, as is the case
with feature structure graphs. If an avm has no row and thus no occurrences of features,
being represented as [], such an avm represents the empty feature structure and only has
the empty path of length 0. But if an avm has at least one row consisting of a feature
name and its value, then there is a path of length 1 corresponding to each occurrence of a
feature name in each row. Given a path of length i, if the last member of that path takes
a nonempty feature structure as value, then that path forms a new path of length i + 1 by
taking each one of the features in that feature structure as its member.

For illustration, consider the following avm which represents exactly the same feature
structure as is represented by the graph notation (6).

(8) Example of an avm notation








orth ‘love’

syntax

[

pos verb

valence transitive

]









This avm has three paths: orth, syntax.pos and syntax.valence. Note that the third
path starts with syntax, although it does not occur in the third row.

4.4.3 XML-based Notation

Representing feature structures in xml notation is possible and rather straightforward,
although a fuller implementation might involve various problems and possibilities. For
example, the feature structure in the following shows a way to represent the same feature
structure given in (6) and (8) in the above.

(9) Feature structure in xml notation

4A colon, an equality sign or a little empty space separates a feature from its value on each row of an
avm.

13

<fs>

<f name="orth"><str>love</str></f>

<f name="syntax">

<fs>

<f name="pos"><sym value="verb"/></f>

<f name="valence"><sym value="transitive"/></f>

</fs>

</f>

</fs>

The feature structure in xml notation is surrounded in <fs> tags, and each of its fea-
tures with <f> tags. Note that despite the apparent difference between the representations
(6), (8) and (9), the information contained in each structure corresponds quite systemati-
cally with that in other structures. For example, arc labels in graph notation like orth and
syntax are now represented by <f> tags with appropriate names. A detailed discussion
including ways to simplify the representation in (9) will be provided in Section 5.

4.5 Structure Sharing

The graphic notation can clearly represent structure sharing also called reentrancy. Consider
the following:

(10) Merging paths in graph notation

determiner

pos

• orth ‘an’
specifier agr

−→• number singular

head agr

• orth ‘apple’
pos

noun

Here, the two specifier.agr and head.agr paths merge on the node number, indicating
that they share one and the same feature structure as their value.

Such structure sharing can also be represented in an avm.

(11) Structure sharing in avm notation




























specifier











pos determiner

orth ‘an’

agr 1

[

number singular
]











head









pos noun

orth ‘apple’

agr 1





































The two occurrences of the identical boxed integer, namely 1 , in the above represen-
tation show that those two occurrences of the feature agr share the same value, namely
singular, for the feature number.

14

The xml-based notation can also handle such sharing or reentrancy by introducing a
global attribute n on element f.

(12) Structure sharing in xml notation

<fs>

<f name="specifier">

<fs>

<f name="agr" n="@1">

<fs>

<f name="number"><sym value="singular"/></f>

</fs>

</f>

<f name="pos"><sym value="determiner"/></f>

</fs>

</f>

<f name="head">

<fs>

<f name="agr" n="@1"/>

<f name="pos"><sym value="noun"/></f>

</fs>

</f>

</fs>

Reentrancy is symmetric and there is no distinguished representative among the different
occurrences of a shared node. In particular, this implies that a value may be attached to
all occurrences of a shared label:

(13) Specifying shared values

<fs>

<f name="specifier">

<fs>

<f name="agr" n="@1">

<fs>

<f name="number"><sym value="singular"/></f>

</fs>

</f>

<f name="pos"><sym value="determiner"/></f>

</fs>

</f>

<f name="head">

<fs>

<f name="agr" n="@1">

<fs>

<f name="number"><sym value="singular"/></f>

</fs>

</f>

<f name="pos"><sym value="noun"/></f>

15

</fs>

</f>

</fs>

Related to structure sharing are at least the following two issues: underspecified values
and cyclic feature structures.

4.5.1 Sharing Underspecified Values

Two nodes of a feature structure may be shared, even if their value is underspecified:

(14) Sharing of underspecified values
















specifier

[

agr 1

pos determiner

]

head

[

agr 1

pos noun

]

















In that case, as will be discussed in Seciton 5 more in detail, the element any may be
used to denote underspecified values for a feature for xml notation:

(15) Use of the element any for underspecified values

<fs>

<f name="specifier">

<fs>

<f name="agr" n="@1"><any/></f>

<f name="pos"><sym value="determiner"/></f>

</fs>

</f>

<f name="head">

<fs>

<f name="agr" n="@1"/>

<f name="pos"><sym value="noun"/></f>

</fs>

</f>

</fs>

The atomic value any can be literally any value and its dual is none.5

4.5.2 Cyclic Feature Structures

The current proposal does not forbid the representation of cyclic feature structures, even if
not handled by most FS implementations.

The most straightforward case is provided by direct embedding:

5See Shieber (1986: 43-44) for a fuller discussion.

16

(16) Direct embedding in avm

• 1 1a b

(17) Direct embedding in avm
[

A 1

[

B 1

]

]

(18) Direct embedding in xml

<f name="a" n="@1">

<fs>

<f name="b" n="@1"/>

</fs>

</f>

However, a cycle may be indirect as follows:

(19) Indirect cycle in avm






A 1

[

B 2

]

C 2

[

D 1

]







(20) Indirect cycle in xml

<fs>

<f name="a" n="@1">

<fs>

<f name="b" n="@2"/>

</fs>

</f>

<f name="c" n="@2">

<fs>

<f name="d" n="@1"/>

</fs>

</f>

</fs>

These equivalent examples show that the two structures tagged by 1 and 2 share their
values with each other in cycle.

4.6 Multi-valued Features

In feature-based grammar formalisms, such as hpsg and lfg, multi-valued features are very
common. Some features take list values and others set or multiset values.6 All the elements
in a list are ordered, while there is no such ordering in a set or multiset. In this sense,
multisets are still sets. Nevertheless, multisets differ from ordinary sets in that multisets

6The term ‘multiset’, with its notation {. .} or {}m , is often called ‘bag’.

17

allow the occurrence of identical elements in them as lists do. The multiset {. a, a .}, for
instance, is not the same as {. a .}, but the ordinary sets {a, a} and {a} are the same
because of the principle of extensionality.

4.6.1 List-valued Features

Perhaps the most famous example of a list-valued feature is the subcat feature in hpsg.
It is used to describe the kind of a grammatical subject and objects that a verb expects
(“subcategorizes for”). For example, to represent that the English verb form ‘gives’ as used
in structures like ‘John gives Mary a kiss’ expects a nominative noun phrase as the subject,
an accusative noun phrase as its indirect object, and another accusative noun phrase as
the direct object, and expects these elements in this order, the feature subcat is given the
value:

(21) subcat as a list-valued feature

[

subcat

〈

np[nom], np[acc], np[acc]
〉

]

Here, each of the nps may carry a label in the form of a boxed integer to indicate structure
sharing with the arguments of a predicate that expresses the semantics of the verb, as shown
in figure NN.

In a more recent version of hpsg, the feature subcat is replaced by a new name,
valence, that takes as its value a feature structure which consists of two list-valued features
specifier and comps, complements.7 They are then linked to another list-valued feature
arg-str, argument structure. Here is an example:

(22) List-valued features



















































orth ‘gives’

synax













pos verb

valence







specifier

〈

1 np[3sing]
〉

comps

〈

2 np, 3 np

〉



















arg-str

〈

1 , 2 , 3

〉

semantics















relation

〈

act, giving
〉

giver 1

recipient 2

given 3

































































The order of complements is crucial in English. The indirect object of a ditransitive
verb like ‘give’ or ‘buy’ precedes the direct object, as in ‘John bought Mary a doll’. Hence,
the value of the feature comps must be presented as a list where each of its members forms
an ordered sequence.

7The feature spec is treated as a list-valued feature because the feature arg-str is treated as the ⊕
concatenation of the two list values of specifer and comps.

18

Note that a list as a feature value may consist of either atomic or complex values, as
shown below.

(23) List as a feature value







F <a, b>

G

〈

[

A a
]

,
[

B b
]

〉







Here, the feature F takes a list of two atomic objects as its value, whereas the feature
G takes a list of two feature structures as its value.

List values can also be represented recursively as shown below:

(24) Recursive representation

































F









first a

rest

[

first b

rest null

]









G













first

[

A a
]

rest





first

[

B b
]

rest null

















































According to this representation, lists as feature values must be viewed as simply serving
as a shorthand notation for representing recursively built complex feature structures.8

4.6.2 Set-valued Features

Some grammatical features may take sets as their values. In free or semi-free order languages
like Japanese, Korean or even German, for instance, the subject and the verbal complements
in a sentence have no fixed order.9 Hence, for these languages, the feature comps as well as
the feature arg-str may be treated as taking a set, not a list of complements or arguments
as its value. For the German equivalent of ‘gives’, the verb form ‘gibt’, we would have the
following:

(25) Set-valued features


























orth ‘gibt’

syntax













pos verb

valence







specifier

〈

1 np[nom]
〉

comps

〈

2 np[dat], 3 np[acc]
〉



















arg-str

{

1 , 2 , 3

}



























8See Shieber (1986: 29-30) for the recursive definition of list.
9There have been some controversies among practicing linguists concerning the validity of presenting

semi-free or free word order as supporting evidence for the introduction of sets as feature values.

19

The proper description of relative clauses like ‘who runs’ may require a multi-valued
feature restriction that provides a set of restrictions on some individual parameter.

(26) Set value for the feature restriction











parameter 1

restriction







[

relation <property, human>

instance 1

]

,

[

relation <activity, running>

runner 1

]

















Here, the set value for the feature restriction contains two feature structures as its
members.10

4.6.3 Multiset-valued Features

Some set-valued features are known to take a particular sort of set called multiset or bag
as their value. The set-valued feature slash in hpsg, for instance, is used for dealing with
wh-movement and other extraction-like phenomena, where the values of slash contains the
(properties of the) extracted gaps and these gaps can at times be identical.

For illustration, consider an example of so-called filler-gap constructions.11

(27) Filler-gap construction
{This bus}1 , I don’t think {Palo Alto}2 is very easy to get to t2 on t1 ?

It has been claimed that the gaps or traces t1 and t2 in this example require the feature
specification like [slash {. np, np .}].

Here is a more convincing example:12

(28) Coreferential pronouns
John1=2 is an idiot. But he1 thinks he2 is smart.

The two occurrences of the pronouns above should be coreferential. So to be able to
capture this coreferentiality, a multiset like the following must be set up for some feature
specification.

(29) Coreferential multiset

{.












pos pronoun

person 3rd

number sing

gender masc













,













pos pronoun

person 3rd

number sing

gender masc













.}

4.7 Typed Feature Structure

In many of the recent grammar formalisms, typed feature structure has become the main
tool for their linguistic descriptions and implementation.

10In Pollard and Sag (1994), so-called nonlocal features like question, relative and slash are treated as
taking set values for analyzing so-called filler-gap or unbounded dependency constructions. The feature que

takes as value a set of non-pronominals, the feature rel a set of referential indices, and the feature slash

a set of local structures.
11Taken from Pollard and Moshier (1990: 291).
12Again, taken from Pollard and Moshier (1990: 294).

20

4.7.1 Types

Elements of any domain can be sorted into some classes called types in a structured way,
based on commonalities of their properties. Linguistic entities, for instance, like phrase,
word, pos (parts of speech), noun, and verb are treated as features in non-typed feature
structure. But in typed feature structure they are rather taken as types.

By typing, each feature structure is assigned a particular type. Each feature specification
with a particular value is then constrained by this typing. A feature structure of the type
noun, for instance, would not allow a feature like tense in it or a specification of its feature
case with a value of the type feminine.13

4.7.2 Definition

The extension of non-typed feature structure to typed feature structure is very simple in
a set-theoretic framework. The main difference between them is the assignment of types
to feature structures. A formal definition of typed feature structure can thus be given as
follows:14

(30) Formal definition of typed feature structure

Given a finite set of Features and a finite set of Types, a typed feature structure
is a tuple T FS = < Nodes, r, θ, δ > such that

i. Nodes is a finite set of nodes.

ii. r is a unique member of Nodes called the root.

iii. θ is a total function that maps Nodes to Types.

iv. δ is a partial function from Features×Nodes into Nodes.

First, each of the Nodes must be rooted at or connected back to the root r. Secondly,
there must one and only one root for each feature structure. Thirdly, each of the Nodes,
including the root r node and terminal nodes, must be assigned a type by the typing function
θ. Finally, each of the Features labelling each of Nodes is assigned a unique value by the
feature value function δ.15

4.7.3 Notations

The typing of feature structures can easily be treated in our notations. A graph for a typed
feature structure will have the following form:

13Note that atomic feature values are considered types, too.
14Slightly modified from Carpenter (1992: 36).
15The unique-value restriction on features does not exclude multi-values or alternative values because even

in these cases each feature ultimately takes a single value which may be considered complex in structure.

21

(31) Typed feature structure in graph
feature1 value1

type0

feature2

value2

feature3 feature31 value31

type30

feature32 value31

The only difference between the typed graph (31) and the non-typed graph (31) is that
each of the two nodes has been assigned a type: one is of type0 and the other of type30.

Corresponding to the non-typed avm (8), here is a typed avm:

(32) Typed feature structure in avm














word

orth ‘love’

syntax

[

verb

valence transitive

]















Here, the entire avm is assigned the type word, whereas the inner avm is assigned the type
verb. Unlike the non-typed (8), this typed avm carries an additonal piece of information
tells that the features orth and syntax are of the type word and the feature valence of
the type verb.

The same type of information can be encoded in an xml notation, as below:

(33) Typed feature structure in xml notation

<fs type="word">

<f name="orth"><str>love</str></f>

<f name="syntax">

<fs type="verb">

<f name="valence"><sym value="transitive"/></f>

</fs>

</f>

</fs>

Note here that the line <f name=“pos”><sym value=“verb”/></f> in the embedded
feature structure <fs> has been replaced by typing that <fs> as in <fs type=“verb”>.

The use of type may also increase the expressive power of a graph notation. On the
typed graph notation, for instance, multi- values can be represented as terminating nodes
branching out of the node labelled with the type set, multiset or list. This node in turn is
a terminating node of the arc labelled with a multit-valued feature, say slash. Each arc
branching out of the multi-valued node, say set, is then labelled with a feature appropriate
to the type.

(34) Set-valued feature slash in graph notation

22

np

slash member1set•
member2

np

The features like member1 and member2 here should be considered appropriate for the
type set.

4.8 Type Inheritance Hierarchies

Types organize feature structures into natural classes and perform the same role as concepts
in terminological knowledge representation systems or abstract data-types in object oriented
programming languages. It is therefore natural to think of types as being organized into
an inheritance hierarchy based on their generality.

The type inheritance hierarchy is defined by assuming a finite set bf Type of types,
ordered according to their specificity, where type τ is more specific than type σ if τ inherits
all properties and characteristics from σ. In this case σ subsumes or is more general than
τ : for σ, τ ∈ Type, σ v τ . If σ v τ , then σ is also said to be a supertype of τ , or, inversely,
τ is a subtype of σ.

The standard approach in knowledge representation systems, which is adopted in the
definition of type hierarchies, has been to define a finite number of isa arcs which link
subtypes to supertypes. The full subsumption relation is then defined as the transitive and
reflexive closure of the relation determined by the isa links. A standard restriction on the
isa links is that they must not be cyclic, i.e. it should not be possible to follow the links
from a type back to itself. This restriction makes the subsumption relation a partial order.

4.8.1 Definition

An inheritance hierarchy is then formally defined as follows:

(35) Definition of inheritance hierarchy
Given a finite set Type of types and the subsumption relation v over Type, an
inheritance hierarchy is a finite bounded complete partial order <Type, v>.

This definition simply says that a type hierarchy forms a tree-like finite structure. It must
have the following properties:

(36) Properties of type hierarchy

Unique top: It must be a single hierarchy containing all the types with a unique
top type.

No cycle: It must have no cycles.

Unique greatest lower bounds: Any two compatible types must have a unique
highest common descendant or subtype called greatest lower bound.16 Incom-
patible types share no common descendants or subtypes.

16If the most general type is depicted not as the top, but as the bottom such that the hierarchical tree
branches out upward like a real tree with the root at the bottom, then this property must be restated as:
Any two compatible types must have a unique least upper bound.

23

Here is an example of a type hierarchy depicting a part of the natural world:

(37) Type hierarchy for some animals

top

/ \

plant animal

/ | \

fish bird mammal

/ | \

canine human bovine

Here, while the types human and canine are not compatible, the types animal and human

are compatible and thus must have a unique greatest lower bound. Being in the hierarchical
relation, the type human becomes that lower bound in a trivial manner.

A linguistically more relevant example can be given as below: 17

(38) Lingusitic example for type hierarchy

feature-structure

/ \

sign pos

/ | \ \

/ | \ \

/ | \ \

adj agr-pos conj prep

/ | \

det noun verb

Here the type feature-structure is treated as the unique top type. The types det, noun and
verb are treated as subtypes of the type agr-pos, since they are governed by agreement rules
in English.18

4.8.2 Multiple Inheritance

Unlike phrase trees, type hierarchies allow common parents or supertypes. Consider a naive
medieval picture of entities as depicted as below:

(39) Medieval hierarchy of entities

entity

/ \

inanimate animate

/ \

animal spiritual

/ \ |

/ \ rational

17Taken modified from Sag, Wasow and Bender (2003: 61).
18In a language like French or Latin, the type adj should be also be treated as a subtype of agr-pos.

24

canine \ / \

human angel

Subtypes inherit all the properties from their supertypes. The type human, for instance,
inherits all the properties of its supertypes, both animal and rational, spiritual, animate

and the top type entity. Note that it has two immediate supertypes or parents, thus being
entitled for so-called multiple inheritance. A human thus is a spiritual and rational animal

animate being.
Linguistic signs may also allow multiple inheritance like the following.19.

(40) Multiple inheritance

sign

/ \

expression lex-sign

/ \ / \

phrase word lexeme

Here, the type word inherits all the properties from both of its immediate supertypes ex-

pression and lex-sign. Hence, a word is a lexical expression.

4.8.3 Type Constraints

In the feature structures discussed so far there is no notion of type constraints or simply
typing : although the nodes in a feature structure graph were labelled with types, arbitrary
labellings with type symbols and features were permissible. What is missing is appropri-

ateness conditions which model the distinction between features which are not appropriate
for a given type and those whose values are simply unknown.

The extension to feature typing is bound to the type hierarchy: for each feature there
must be a least type where the feature is introduced and the type of the value for the feature
is specified. Furthermore, if a feature is appropriate for a type, then it is appropriate for
all of its subtypes.

Consider features like case and aux for English. The feature case may be appropriate
for the type noun, while it may not be so for the type verb. Likewise, the feature aux is
appropriate for the type verb, but not for the type nominal. Hence, each type is closely
associated with a set of appropriate features.

The values of each feature are again restricted as types. The appropriate or permissible
values of the feature case are nom, dat, acc etc., but cannot be boolean values, namely
+ and -. On the other hand, the appropriate values of the feature aux are only boolean
values.

Consider the following type hierarchy for agreement:20

(41) Agreement type hierarchy

feature-structure

|

agr-cat

19See Sag, Wasow and Bender (2003: 470-475)
20Copied from the type hierarchy presented in Sag, Wasow and Bender (2003: 492).

25

[PERSON

NUMBER]

/ \

3sing non-3sing

[GENDER] / \

1sing non-1sing

/ \

2sing plural

Here, the type agr-cat and its left daughter 3sing are annotated with a set of appropriate

features, {person,number} and {gender} for their respective type. By such an annotated
hierarchy, the construction of well-formed feature structures is strictly constrained. In
constructing feature structures, the type agr-cat licenses the specification of the features
person and number only, while the type 3sing allows the specification of the feature
gender as well as those two inhertied features person and number from its supertype
agr-cat.

Furthermore, each feature is assigned a particular set called library of feature values.
The following would be an example:

(42) Feature value library
features admissible values

person {1st, 2nd, 3rd}
number {singular, plural}
gender {feminine, masculine, neuter}

These two working together lay a basis for deciding on well-formed feature structures.
For example, the following would not be a well-formed feature structure:

(43) Ill-formed feature structure








agr-cat

person 3rd

tense singular









The feature tense is not appropriate for the type agr-cat nor the value singular can be
admissible for the feature tense. Thus, the feature structure above is declared to be
ill-formed.

On the other hand, the following is a well-formed feature structure:

(44) Well-formed feature structure








1sing

person 1st

number singular









Being a subtype of agr-cat, the type 1sing inherits two of its appropriate features. These
two features are then assigned admissible values.

26

4.9 Subsumption: Relation on Feature Structures

The primary goal in constructing feature structures is thus to capture and represent partial
information. No feature structure is expected to represent the total information describing
all possible worlds or states of affairs. It may be of greater interest and value to focus on
particular aspects of interesting situations and capture various sorts of related information.
The relation of subsumption on feature structures is thus introduced to be able to tell which
feature structure carries more information than the others.

Some feature structures carry less information than others. The extreme case, perhaps
the most uninteresting case, is the empty feature structure [] sometimes called variable

that carries no information at all. For more interesting cases, consider the following two
feature structures:

(45) a.
[

word

orth ‘loves’

]

b.














word

orth ‘loves’

syn

[

verb

form finite

]















The feature structure (a) says that the word is a string consisting of 5 alphabets spelled
as ‘l-o-v-e-s’ and that’s all. But the feature structure (b) says more than that by providing
the additional information that it is a finite verb. Hence, (a) is said to be less informative
than (b).

To describe such a relation among some feature structures, a technical term is introduced
that is called subsumption. In the above case, (a) is said to subsume (b).

4.9.1 Definition

Intuitively speaking, a feature structure A subsumes a feature structure B if A is not
more informative than B, thus subsuming all feature structures that are at least equally
informative as itself. Since it carries no information, the empty feature structure [] subsumes

not only the feature structures (a) and (b), but also any other feature structures including
itself. More strictly speaking, the subsumption relation is a partial ordering over feature
structures and is defined as follows:21

(46) Definition of Subsumption
Given two typed feature structures, FS1 and FS2 , FS1 is said to subsume FS2 ,
written as A v B if and only if the following conditions hold:

A. Path values Every path P which exists in FS1 with a value of type t also
exists in FS2 with a value which is either t or its subtype.

B. Path equivalences Every two paths which are shared in FS1 are also shared in
FS2 .

21Carpenter (1992: 43) claims that the subsumption relation is a pre-ordering on the collection of feature
structures. It is transitive and reflexive, but not anti-symmetric because it is possible to have two distinct
feature structures that mutually subsume each other. But these are alphabetic variants.

27

C. Type ordering Every type assigned by FS1 to a path subsumes the type as-
signed to the same path in FS2 in the type ordering.

Each of the three conditions A, B, and C can be illustrated as below:

4.9.2 Condition A on Path Values

(47) Example satisfying Condition A

A









verb

agr

[

agr-cat

number singular

]









v

B





















verb

agr









agr-cat

person 3rd

number singular









tense present





















There is only one path in A: <agr.number>. This path exists in B and their values
are the same.22 Hence, Condition A is satisfied. Condition B is inapplicable here, since
there is no structure sharing in either of the two feature structures. Condition C is satisfied
because every type assigned by A to a path is identical with the type assigned to the same
path in B. Hence, A subsumes B.

4.9.3 Condition B on Structure Sharing

(48) Case satisfying Conditon B

A





















syn-cat

valence









val-cat

specifier < 1 NP >

comps < >









arg-str < 1 >





















v

B





































syn-cat

orth ‘walks’

head

[

verb

form finite

]

valence









val-cat

specifier < 1 NP >

comps < >









arg-str < 1 >





































This example looks a bit complicated. But one can easily check that the structure sharing
tagged by 1 in A also exists in B and the other two conditions are also satisfied. Hence,
this subsumption relation holds here.

Consider the following pair of examples related to the structure sharing condition:

22The indices A and B are tagged to the features structures for our present discussions only.

28

(49) Another case involving structure sharing

C









































word

syn



































syn-cat

head









noun

agr 1

[

agr-cat

person 3rd

]









valence









val-cat

specifier <

[

noun

agr 1

]

>



















































































D

















































word

syn









































syn-cat

head









noun

agr

[

agr-cat

person 3rd

]









valence

















val-cat

specifier <









noun

agr

[

agr-cat

person 3rd

]

>

















































































































Here, D subsumes C because it satisfies Condition A and C, while Condition B is not
relevant. On the other hand, C does not subsume D because Condition B applies here and
is violated.

4.9.4 Condition on the Type Ording

This condition applies only to typed feature structures under the assumption of some kind
of type inheritance hierarchy assumed. Pronouns, proper nouns, and common nouns are
subtypes of the supertype noun. Hence, all these subtypes share some properties of each
being a noun. Thus, the following is a simple example of subsumption:

(50) Case involving type ordering

A















noun

orth ‘Mary’

agr

[

person 3rd

number singular

]















v

B





















name

orth: ‘Mary’

agr:









person 3rd

number singular

gender feminine





























where noun v name

29

Since the type noun of A is a supertype of the type name of B, A subsumes B. Further-
more, B has an extra piece of information about the gender. Hence, A properly subsumes
B.

4.10 Operations on Feature Structures and Feature Values

As a corollary to subsumption, unification is the main topic of this section. Compatible
feature structures can be unified to carry a more increased piece of information in general.
Generalization is its dual and will also be discussed. In addition, some operations like the
concatenation ⊕ of list values, alternative feature values and conjunctive types will also be
topics of this section.

Kiyong: this section hasn’t been completed yet.

4.10.1 Compatibility

Some feature structures are compatible with some others, while there are conflicting cases.
Consider the following three ßavm’s:23

(51) a.

A





noun

agr

[

person 3rd
]





b.

B









noun

agr

[

num Sg

gender feminine

]









c.

C









noun

agr

[

person 3rd

gender masculine

]









The feature structure A is compatible with B and also with C. But the feature struc-
tures B and C are incompatible because their information about the gender of a noun is
conflicting. Incompatibility may also arise when there is a type difference, as shown below:

(52) Incompatible feature structures

a.

E









noun

agr

[

person 3rd

number singular

]









b.

F









verb

agr:

[

person 3rd

number singular

]









The feature structures E and F may have the same agreement features, but they are
incompatible because their types are different: one is a noun, but the other a verb.

23Type labels like syn-cat, val-cat and agr-cat are not very informative, so they will be omitted from now
on.

30

4.10.2 Unification

Compatible feature structures often represent different aspects of information from different
sources. Merged together, they may convey a more coherent picture of information. This
process of information merge is captured by the operational process of unifying two com-
patible feature structures, FS1 and FS2 , represented FS1 u FS2 .24 Compatible feature
structures can be unified together to form a more (or at least equally) informative feature
structure. The unification of two typed feature structures FS1 and FS2 is the most general
typed feature structure which is subsumed by both FS1 and FS2 , if it exists.25

(53) Formal definition of unification
The unification of F 1 uF 2 of two typed feature structures F 1 and F 2 is the greatest
lower bound of F 1 and F 2 in the collection of typed feature structures ordered by
subsumption.

The feature structure A, for instance, can be unified with C, yielding a little bit more
enriched feature structure D.

(54) Unified feature structure

D















noun

agr









numer singular

person 3rd

gender masculine























Unification normally adds information as illustrated just now. But the identical features
may unify without adding any further information. The empty feature structure may unify
every feature structure without changing the content of the latter, thus formally treated as
the identity element of unification.

4.10.3 Unification of Shared Structures

24

25This and the following definition are copied from Copestake (2002: 55, 61).

31

