
Introduction to XQuery

Dr James Cummings
Oxford Text Archive
University of Oxford

What is XQuery?
● Officially "XML Query", but everyone calls it

XQuery
● It is a domain-specific method for accessing and

manipulating XML
● It is meant for querying XML
● It is built upon XPath
● It is like SQL but for XML
● It is a W3C recommendation

XQuery Expressions
● path expressions (return a nodeset)
● element constructors (return a new element)
● FLWOR expressions (like SQL 'SELECT')
● list expressions (operate on lists or nodesets)
● conditional expressions (if then else)
● qualified expressions (boolean operations over

nodesets)
● datatype expressions (test datatypes of values)

Path Expressions
● This is the XPath part of XQuery:

//p/foreign[@lang='lat']

//foreign[@lang='lat']/text()

document('test.xml')//p

collection('/db/PC')//person//surname

Element Constructor
● May contain literal text and/or variables:

<latin>o tempora o mores</latin>

<latin>{$s}</latin>

item one is {$one}
item two doesn't exist

FLWOR Expression
● For - Let - Where - Order – Return

– for defines a cursor over an XPath selection
– let defines a name for the contents of an XPath
– where selects from the nodes as in SQL
– order sorts the results as in SQL
– return specifies the XML fragments to be constructed

● Curly braces are used for grouping, and define the
scope of the for clause

● This is one of the most common forms of XQuery,
and is often used for the equivalent of SQL joins

FLWOR Expression Example
● For every <text> element in the database of XML documents
● Let the variable $lats point to any <foreign> child (with 'lang'

attribute of 'lat') of the <text> element we are currently processing
● Where there is more than one Latin phrase ($lat)
● Order these by the number phrases
● Return a new <latin> element with $lats and that text's id attribute

for $t in //text
let $lats := $t//foreign[@lang='lat']
where count($lats) > 1
order by count($lats)
return
<latin>{$lats}<txt>{$t/@id}</txt> </latin>

List Expressions
● XQuery expressions manipulate lists of values,

for which many operators are supported:
– constant lists: (7, 9, <thirteen/>)
– integer ranges: i to j
– XPath expressions
– concatenation
– set operators: | (or union), intersect, except
– functions: remove, index-of, count, avg, max, min,

sum, distinct-values ...

List Expressions (nodesets)

● When lists are viewed as nodesets:
– XML nodes are compared on node identity
– duplicates are removed
– the order is preserved

Conditional Expressions
● Usually used in user-defined functions:

<div>
 {
 IF document("test.xml")//title/text()
 ="XQuery Test"
 THEN <p>This is true.</p>
 ELSE <p>This is false.</p>
 }
</div>

Qualified Expressions (some)
● some in satisfies:

for $b in document("book.xml")//text
where some $p in $b//p satisfies
 (contains($p,"sailing") AND
contains($p,"windsurfing"))
return
$b/ancestor::teiHeader//title[1]

Qualified Expressions (every)
● every in satisfies:

for $b in document("book.xml")//text
where every $p in $b//p satisfies
 contains($p,"sailing")
return $b/ancestor::teiHeader//title[1]

Datatype Expressions
● XQuery supports all datatypes from XML Schema, both

primitive and complex types
● Constant values can be written:

– as literals (like string, integer, float)
– as constructor functions (true(), date("2001-06-07"))
– as explicit casts (cast as xsd:positiveInteger(47))

● Arbitrary XML Schema documents can be imported into
an XQuery

● An instance of operator allows runtime validation of any
value relative to a datatype or a schema

● A typeswitch operator allows branching based on types

eXist: Looking For Words
● We are going to be using the eXist native XML Database

to practice our XQueries. It has some useful text
searching capabilities. For example:

//p &= 'fish dutch'
● This will find paragraphs containing both the words fish

and dutch (in either order), and is rather easier to type
than the equivalent xpath:

//p[contains(.,'fish') and contains(.,'dutch')]
● In eXist you can also do a proximity search:

//p[near(.,'fish dutch',20)]
● as well as stem matching:

//p &= 'fish*'

FLWOR Quiz:
● What does the following do and return?

(: This is a how you do a comment :)
declare namespace tei="http://www.tei-c.org/ns/1.0";
let $countryList :=//tei:teiCorpus//tei:taxonomy[@id='Country']
for $person in //tei:TEI//tei:person
let $title := $person/ancestor::tei:TEI/descendant::tei:title[1]/text()
let $nationality := $person/tei:nationality/@code
let $forename := $person/tei:persName/tei:foreName
let $surname := $person/tei:persName/tei:surname
let $nation := $countryList/tei:category[@id=$nationality]/tei:catDesc/text()
order by $nationality
return
Title: {$title}
Name: {concat($forename,' ',$surname)}
Country: {$nation} ({string($nationality)})

Exercises
● If we have time, there are some quick XQuery

exercises for you to do
● Knoppix:

– Knoppix should already be loaded
– Go back to Firefox and eXist's

'Basic XQuery Interface'
● You should have this XQuery summary

