
TEI
Accessing TEI XML Documents

James Cummings Date: November 2004

1 Methods of Access
So you’ve created some TEI XML documents, what now?

• XPath

• XML Query (XQuery)

• XSLT Tranformation another format (HTML, PDF, RTF, CSV, etc.)

• Custom Applications (Xaira, TEIPubisher, Philologic etc.)

2 What is XPath?
• It is a syntax for accessing parts of an XML document

• It uses a path structure to define XML elements

• It has a library of standard functions

• It is a W3C Standard

• It is one of the main components of XQuery and XSLT

3 XPath: You Already Understand Paths
Assume we have a document that solely contains:

<person sex="m" age="78">
<persName>
<foreName>Hans</foreName>
<surname>von Hülsen</surname>

</persName>
<birth date="1890-04-05"/>
<death date="1968-04-14"/>
<nationality code="Z_"/>

</person>

4 XPath: What do these paths get us?
• /person/persName/surname

• /person/@sex

• /person/birth/@date

• /person/persName/foreName/../../death/@date

• //surname

• persName/foreName

If an XPath starts with a / then it is an absolute path to an element. If an XPath starts with // then all elements in
the document that fulfill the criteria will be selected

5 XPath: Unknown Elements
• /person/*/surname

• //persName/*

• /person/nationality/@*

• /person/*

• //*

1 Date: November 2004 (revised 15 Nov. 04)

Accessing TEI XML Documents

6 XPath: Branches of the Tree
• /person/persName[1]

• /person/persName/*[1]

• /person/persName[surname]

• /person/persName/*[last()]

• //person[@age > 70]

• //person[@age]

Terminating an XPath with something in square brackets allows you to branch or filter that path based on the next
element.

7 XPath: Selecting Multiple Paths
• /person/persName/surname | /person/nationality

• //surname | //birth | //death

• //nationality/@code | //surname | //@sex

8 XPath: More About Paths
• A location path results in a node-set

• Paths can be absolute (/person/persName)

• Paths can be relative (persName/surname)

Formal Syntax:
axisname::nodetest[predicate]

for example:
child::persName[foreName = ’Hans’]

9 XPath: Axis

ancestor Contains all ancestors (parent, grandparent, etc.) of the current node
ancestor-or-self Contains the current node plus all its ancestors (parent, grandparent, etc.)
attribute Contains all attributes of the current node
child Contains all children of the current node
descendant Contains all descendants (children, grandchildren, etc.) of the current node
descendant-or-
self

Contains the current node plus all its descendants (children, grandchildren, etc.)

following Contains everything in the document after the closing tag of the current node
following-
sibling

Contains all siblings after the current node

parent Contains the parent of the current node
preceding Contains everything in the document that is before the starting tag of the current node
preceding-
sibling

Contains all siblings before the current node

self Contains the current node

10 XPath: axis::nodetest Examples

ancestor::person Selects all the ’person’ ancestors of the current node.
ancestor-or-self::person Selects the current node plus all ’person’ ancestors.
attribute::age Selects the age attribute of the current node.
child::surname Selects the surname child of the current node
descendant::person Selects all the person descendants of the current node
descendant-or-
self::persName

Selects current node and all persName descendants

following::person Selects all person elements after the current node
following-sibling::person Selects all person siblings after the current node

Date: November 2004 (revised 15 Nov. 04) 2

15 XPath Functions: String Functions

parent::persName Selects the persName parent element of the curent node
preceding::person Selects the person element that is preceding the current node.
preceding-sibling::person Selects the preceding person elements that are all siblings before the current

node
self::person Selects the current person node

11 XPath: Predicates
• child::person[attribute::age=’74’]

• child::person[@age=’74’]

• child::person[position()=’1’]

• child::person[1]

• child::person[last()]

• child::person[last()-1]

12 XPath: Abbreviated Syntax

nothingchild:: person is short for child::person
@ attribute:: @age is short for attribute::age
. self::node() ./birth is short for self::node()/birth
.. parent::node() ../birth is short for parent::node()/child::birth
// descendant-or-

self::node()
person//surname is short for child::person/descendant-or-
self::node()/child::surname

13 XPath: Operators
XPath has support for numerical, equality, relational, and boolean expressions

+ Addition 3 + 2 = 5
- Subtraction 10 - 2 = 8

Multiplication 6 * 4 = 24
div Division 8 div 4 = 2
mod Modulus 5 mod 2 = 1
= Equal @age = ’74’ True (if @age does

equal ’74’)
!= Not equal @age != ’74’ False
< Less than @age < ’84’ True
<= Less than or equal @age <= ’72’ False
> Greater than @age > ’25’ True
>= Greater than or equal @age >= ’72’ True
or Boolean OR @age = ’74’ or @age = ’64’ True
and Boolean AND @age <= ’84’ and @age = ’74’ True

14 XPath Functions: Node-Set Functions

count() Returns the number of nodes in a node-set count(person)
id() Selects elements by their unique ID id(’S3’)
last() Returns the position number of the last node person[last()]
name() Returns the name of a node //*[name(’person’)]
namespace-
uri()

Returns the namesparce URI of a specified node namespace-
uri(persName)

position() Returns the position in the node list of the node that is currently being
processed

//person[position()=’6’]

15 XPath Functions: String Functions

concat() Concatenates its arguments concat(’http://’, $domain,
’/’, $file, ’.html’)

contains() Returns true if the second string is contained withing the first string //persName[contains(surname,
’van’)]

3 Date: November 2004 (revised 15 Nov. 04)

Accessing TEI XML Documents

normalize-
space()

Removes leading and trailing whitespace and replaces all internal
whitespace with one space

normalise-space(surname)

starts-
with()

Returns true if the first string starts with the second starts-with(surname,
’van’)

string() Converts the argument to a string string(@age)
substring Returns part of a string of specified start character and length substring(surname, 5,4)
substring-
after()

Returns the part of the string that is after the string given substring-after(surname,
’De’)

substring-
before

Returns the part of the string that is before the string given substring-before(@date, ’-
’)

translate() Performs a character by character replacement. It looks at the
characters in the first string and replaces each character in the first
argument given for the one in the same position in the string2

translate(’1234’, ’24’,
’68’)

16 XPath Functions: Numeric Functions

ceiling() Returns the smallest integer that is not less that the number given ceiling(3.1415)
floor() Returns the largest integer that is not greater than the number given floor(3.1415)
number() Converts the input to a number number(’100’)
round() Rounds the number to the nearest integer round(3.1415)
sum() Returns the total value of a set of numeric arguments sum(//person/@age)
not() Returns true if the condition is false not(position() >5)

17 XPath: Where can I use XPath?
Learning all these functions, though a bit tiring to begin with can be very useful as they are used throughout XML
technologies, but especially in XSLT and XQuery.

18 What is XQuery?
• It is a domain-specific method for accessing and manipulating XML

• It is meant for querying XML

• It is built upon XPath

• It is like SQL but for XML

• A W3C proposed recommendation

19 XQuery: Expressions
path expressions return a nodeset

element constructors return a new element

FLWOR expressions analogous to SQL Select statement

list expressions operations on lists or sets of values

conditional expressions traditional if then else construction

qualified expressions boolean operations over lists or sets of values

datatype expressions test datatypes of values

20 XQuery: Path Expression
The simplest kind of XQuery that you’ve already seen:

document("test.xml")//p

//p/foreign[@lang=’lat’]

//foreign[@lang=’lat’]/text()

Date: November 2004 (revised 15 Nov. 04) 4

21 XQuery: Element constructor

21 XQuery: Element constructor
May contain literal text or variables:

<latin>o tempora o mores</latin>

<latin>{$s}</latin>

22 XQuery: FLWOR expressions
For - Let - Where - Order - Return

for $t in //text
let $lats := $t//foreign[@lang=’lat’]
where count($lats) > 1
order by count($lats)
return
<latin>
{$lats}
<txt>{$t/@id}</txt>
</latin>

• for defines a cursor over an xpath

• let defines a name for the contents of an xpath

• where selects from the nodes as in SQL

• order sorts the results as in SQL

• return specifies the XML fragments to be constructed

• Curly braces are used for grouping, and define the scope of the for clause

• This is one of the most common forms of XQuery, and is often used for the equivalent of SQL joins.

23 XQuery: List Expressions
XQuery expressions manipulate lists of values, for which many operators are supported:

• constant lists: (7, 9, <thirteen/>)

• integer ranges: i to j

• XPath expressions

• concatenation

• set operators: | (or union), intersect, except

• functions: remove, index-of, count, avg, max, min, sum, distinct-values ...

When lists are viewed as sets:

• XML nodes are compared on node identity

• duplicates are removed

• the order is preserved

5 Date: November 2004 (revised 15 Nov. 04)

Accessing TEI XML Documents

24 XQuery: Conditional Expressions

<div>
{
IF document("xqt")//title/text()

="Introduction to XQuery"
THEN <p>This is true.</p>
ELSE <p>This is false.</p>

}
</div>

25 XQuery: Qualified Expressions
• some-in-satisfies

for $b in document("book.xml")//text
where some $p in $b//p satisfies
(contains($p,"sailing") AND contains($p,"windsurfing"))

return $b/ancestor::teiHeader//title[1]

• every-in-satisfies

for $b in document("book.xml")//text
where every $p in $b//p satisfies
contains($p,"sailing")

return $b/ancestor::teiHeader//title[1]

26 XQuery: Datatype Expressions
• XQuery supports all datatypes from XML Schema, both primitive and complex types

• Constant values can be written:

– as literals (like string, integer, float)

– as constructor functions (true(), date("2001-06-07"))

– as explicit casts (cast as xsd:positiveInteger(47))

• Arbitrary XML Schema documents can be imported into an XQuery

• An instance of operator allows runtime validation of any value relative to a datatype or a schema.

• A typeswitch operator allows branching based on types.

27 eXist: Looking for words
We are going to be using the eXist native XML Database to practice our XQueries. It has some useful text
searching capabilities. For example:

//p &= ’fish dutch’

will find paragraphs containing both the words fish and dutch (in either order), and is rather easier to type than
the equivalent xpath:

//p[contains(.,’fish’) and contains(.,’dutch’)]

In eXist you can also do a proximity search:

//p[near(.,’fish dutch’,20)]

Date: November 2004 (revised 15 Nov. 04) 6

28 Choosing between XML Technologies

as well as stem matching:

//p &= ’fish*’

28 Choosing between XML Technologies
• Not locked into one solution

• Multiple technologies work well together

• Different technologies for different purposes

29 A choice of generic XML vocabularies
• XML Schema: describes structures and data types;

• XPath: describes how to address any part of an XML document

• XSLT: describes how to transform an XML document;

• XQuery: an XML database query language.

30 Storage strategies
Data has to be stored somewhere. How should XML data be managed? There are several possibilities:

1. as discrete XML documents

2. within any convenient DBMS

3. within an XML fragment repository or native XML Database

31 DBMS or XML?
Do you have to choose?

• The argument from history

1. flatfiles gave way to network DBMS

2. network DBMS gave way to relational

3. will relational DBMS give way to XML databases?

• Getting the best of both worlds

– DBMS are good at storing and managing relations

– but equivalent technologies for XML are rapidly maturing

– and even XML support is present in many DBMS

– for XML documents, an XML solution is best

32 Other Related Technologies
• TEIPublisher

• Apache’s Cocoon

• Philologic

• Leaders

• Xaira

7 Date: November 2004 (revised 15 Nov. 04)

Accessing TEI XML Documents

33 stone-wife-0

34 stone-wife1

35 stone-wife2

Date: November 2004 (revised 15 Nov. 04) 8

36 stones-husb-collox

36 stones-husb-collox

37 stones-wife-collox

38 Delivery strategies
• Our goal is fast and efficient access to any subtree of the docuverse, of any size

• Xpath has an adequately rich semantics

• XSLT has an adequately rich syntax

• XQuery offers all the programming features we need

• The rest is a Simple Matter of Programming...

9 Date: November 2004 (revised 15 Nov. 04)

	Methods of Access
	What is XPath?
	XPath: You Already Understand Paths
	XPath: What do these paths get us?
	XPath: Unknown Elements
	XPath: Branches of the Tree
	XPath: Selecting Multiple Paths
	XPath: More About Paths
	XPath: Axis
	XPath: axis::nodetest Examples
	XPath: Predicates
	XPath: Abbreviated Syntax
	XPath: Operators
	XPath Functions: Node-Set Functions
	XPath Functions: String Functions
	XPath Functions: Numeric Functions
	XPath: Where can I use XPath?
	What is XQuery?
	XQuery: Expressions
	XQuery: Path Expression
	XQuery: Element constructor
	XQuery: FLWOR expressions
	XQuery: List Expressions
	XQuery: Conditional Expressions
	XQuery: Qualified Expressions
	XQuery: Datatype Expressions
	eXist: Looking for words
	Choosing between XML Technologies
	A choice of generic XML vocabularies
	Storage strategies
	DBMS or XML?
	Other Related Technologies
	stone-wife-0
	stone-wife1
	stone-wife2
	stones-husb-collox
	stones-wife-collox
	Delivery strategies

