
Introducing Introducing
XAIRA…XAIRA…
An XML-aware tool for corpus
indexing and searching

Lou Burnard
Tony Dodd

Research Technology Services, OUCS

Topics
Background: from SARA to XAIRA
Architectural issues
What can you do that's fantastic?

http://www.oucs.ox.ac.uk/rts/xara/

Software development: the
conventional wisdom
i. Assess user needs/requirements
ii. Prototype systems to fit user needs
iii. Evaluate against user performance
iv. Repeat from stage ii. until either

a) user is happy, or
b) money runs out

Software development: the
usual practice
Creeping featurism

 hey, that's a cool idea, I'll bolt that on too
The Hausmann effect

 this is hopeless, we need to drive a few
boulevards through here

Modularity and standardized interfaces
are your only friends

Historical Background (c.1994)
 Original design goals

 robust searching of very large (c. 1 Gb) amount of
SGML data

 re-use available indexing tools
 usable by researchers in CL, NLP, lexicography

 Original assumptions
 client/server architecture
 index build once only
 one specific corpus (the BNC) only

Historical Background (c.2002)
 Design goals

 robust searching of any amount of XML data
 offload processing to other components

wherever possible
 assume nothing about input DTD

 Architecture
 client/server still valid
 expect to re-index often
 expect multiple interfaces

Why another search engine?
Can't you do all this with Google?

 Digital texts are not just for discovery and
display

 The methods of corpus linguistics have a
wider relevance

Can't you do all this with eXist?
 Probably, but only if you have a team of

programmers at your disposal!

Xaira: the key features
 Supports word search, concordance

generation and manipulation, collocation,
lexical analysis

 Uses XML annotation to the max
 Supports XML-aware complex queries
 Leverages existing standards

 TEI/XCES
 Unicode
 CSS and XML
 SOAP (xmlrpc)

 Uses efficient and compact indexing
appropriate to small or huge corpora

Architectural issues

How do the various parts of a
XAIRA system interact?

First catch your corpus…
 any collection of well-formed XML documents

 if a DTD is supplied, the corpus must be valid
 if no TEI header is present, one will be created

 the more you put in, the more you get out
 "texts" are defined independently of file

structure, as are the relevant units within them
 all indexing information is stored in the corpus

header

Building the indexes
 tokenization

 implicit, following Unicode rules (locale-sensitive)
 explicit, following mark up
 supports lexical features (eg collocation)

 lemmatization and POS tags
 special case of "additional key" mechanism
 generalized to provide fast context-specific

searches
 tag indexes

 attribute values and codebooks

Next, build your index…
 Can be done simply by adding appropriate

declarations to the TEI Header and running
the indexer utility

 But probably easier to do with the supplied
Indextools utility which
 organizes and validates the files you are using
 updates (or creates) the header with

 tokenization and indexing rules
 tag and attribute usage, descriptive codebooks etc.
 "bibliographic" metadata
 default behaviour for character encoding, formats used, etc

 optionally runs and tests the indexer

TEI
Header

Architecture

indexcorpus

server

Web
client

clientPC client

lexica

xara object model

SOAP

Hoorah for Unicode
 All data is held internally as Unicode

 this allows us to defer most problems (e.g.
tokenization, case-folding, line-breaking, character
normalization, glyph composition) to someone else!

 User interface issues
 For output, use one or more appropriate fonts
 For input, we provide a keyboard definition utility

Client/protocols
 The original SARA protocol

 Corpus Query Language
 Ad-hoc ASCII strings

 Now revised completely
 Sara Object Model can be accessed

 directly by the client
 via a SOAP wrapper
 using saraScript

 The model defines
 CQL in XML
 methods to manipulate CQL queries and results

 Support for web services

Corpus Query Language
 Tokens

 word, punctuation mark, substring
 word+annotation/s (e.g. POS)
 Unicode-compliant regular expressions for words,

attribute values
 XML start- or end-tag, plus attributes

 Boolean operations
 negation, optionality
 sequence, disjunction, join

 Scoped operations
 within span, within XML element

Client features
User-configurable display

 plain, XML, user-defined stylesheets
User-definable keyboard mapping
Texts, Results, Browse windows
 Results can be exported in XML
 Scripting language

What can you do that's fantastic?

A sketchy over view of Xaira's
query and display facilities

Target queries
 What is the most frequent noun in this corpus?
 Find a random sample of 100 instances of "fish"

followed by "chips" within 4 words
 Find sentences beginning with a conjunction.
 Show all inflected forms of the name "Winston".
 Show sentences which begin with "well" and end with

a question mark.
 How often and in what contexts is the word "nature"

used in different kinds of writing?
 Which verbs collocate significantly with "bosom" at

different periods of history?
 Do men use colour vocabulary differently from

women?

Phrase or simple query
search word or phrase
can be case sensitive
can include punctuation
can include anyword character
watch out for tokenization problems

Word Query
searches the lexicon for word stem or

pattern
 returns matching word forms with

frequencies
can restrict by frequency
can apply lemmatization rules
 then carries out a lookup to display hits

XML query
searches for XML start- or end-tags

(not elements)
start-tags optionally qualified by

attribute values
uses predefined codebooks (value

indexes) if available
useful in combination with other queries

XML query

Building complex queries
visual interface
scope node defines where to look

 an XML element
 by span

query nodes define what to look for
 word, phrase, POS, pattern, XML, or AnyWord

 link types define sequence in which
query node targets should occur
 next, one-way, two-way

Sentences beginning with
conjunctions

Display of results
Line (KWIC) or Page mode
Context size expandable ad lib
User defined formatting

 stylesheet mechanism based on CSS
Export of result files

 in XML, or tab delimited

Sample stylesheet display

Collocations of the lemma God

Manipulation of results
Sorting

 by left, right, or centre spans
 by orthographic form or POS code
 case sensitive or insensitive

Thinning
 at random
 by selection

Analysis and partitioning

Partitions
 A partition is a way of grouping the texts making

up a corpus, according to
 some explicit annotation or characterization (e.g. an attribute

value)
 according to whether or not they match a query (a partition of

two halves)
 arbitrary manual classification

 Each member of a partition is a discrete text
 Analysis shows the rate of occurrence of hits

within members of the partition
 Partitions can be saved and re-used or defined

dynamically
 indextools generates a default partition using

<catRef> element

crist by text

Use of nature by domain

Saving and re-using queries
Bookmarks
Queries are saved with thinning

information
Optional annotation
Associated bookmarks are preserved

