
Taming the TEI Tiger 1

Taming the TEI Tiger

Lou Burnard

June 2004

Taming the TEI Tiger 2

Today’s topics
• The TEI and its architecture

• Working with the schema generator

How does the TEI scheme work? In today’s exercise,
you’ll learn how to build your very own schema.

Taming the TEI Tiger 3

XML : a licence for ill?
XML allows you to make up your own tags, and
doesn’t require a DTD...

* The XML concept is dangerously powerful:

* XML elements are light in semantics

* one man’s <p> is another’s <para> (or is it?)

* the appearance of interchangeability may be
worse than its absence

* But XML is still too good to ignore

* mainstream software development

* proliferation of tools

* the future of the web

Taming the TEI Tiger 4

What kind out of grammar do
you need?
* To get the best out of XML, you need two kinds of

grammar:

* document type declaration: names for your
elements, attributes, entities, notations
(syntactic constraints)

* document type definition: usage and meaning
constraints on the foregoing

* Published specifications usually combine the two,
hence they lack modularity

Taming the TEI Tiger 5

Some answers
* Rolling your own schema

* ... starting from scratch

* ... by combining snippets, preferably from an
existing conceptual framework (aka
architecture)

* customizing someone else’s schema

* definitions should be meaningful within a
given user community

* declarations should be appropriate to a given
set of applications

* The TEI provides a good candidate architecture

Namespaces do not provide the whole answer
(though at least they remind us the problem exists)

Taming the TEI Tiger 6

The T E what?
* Originally, a research project within the humanities

* Sponsored by three professional associations

* Funded 1990-1994 by US NEH, EU LE
Programme et al

* Major influences

* digital libraries and text collections

* language corpora

* scholarly datasets

* International consortium established June 1999
(see http://www.tei-c.org/)

Taming the TEI Tiger 7

Goals of the TEI
* better interchange and integration of scholarly

data

* support for all texts, in all languages, from all
periods

* guidance for the perplexed: what to encode —
hence, a user-driven codification of existing best
practice

* assistance for the specialist: how to encode —
hence, a loose framework into which
unpredictable extensions can be fitted

These apparently incompatible goals result in a
highly flexible, modular, environment.

Taming the TEI Tiger 8

TEI Deliverables
* A set of recommendations for text encoding,

covering both generic text structures and some
highly specific areas based on (but not limited by)
existing practice

* A very large collection of element definitions
combined into a very loose document type
declaration

* A mechanism for creating multiple views
(schemas) of the foregoing

* One such view and associated tutorial: TEI Lite
(http://www.tei-c.org/TEI/Lite/)

for the full picture see
http://www.tei-c.org/TEI/Guidelines/

Taming the TEI Tiger 9

Legacy of the TEI
* a way of looking at what ‘text’ really is

* a codification of current scholarly practice

* (crucially) a set of shared assumptions and
priorities about the digital agenda:

* focus on content and function (rather than
presentation)

* identify generic solutions (rather than
application-specific ones)

Taming the TEI Tiger 10

Designing a schema for the TEI
* How can a single mark-up scheme handle a large

variety of requirements ?

* all texts are alike

* every text is different

* Learn from the database designers

* one construct, many views

* each view a selection from the whole

Taming the TEI Tiger 11

How many schemas do we
need?
* one (the Corporate or WKWBFY approach)

* none (the Anarchic or NWEUMP approach)

* as many as it takes (the Mixed Economy or XML
approach)

or a single main schema with many faces (a British
schema)

Taming the TEI Tiger 12

Core modules
* infrastructure module: element classes and

macros

* detailed metadata provision: the TEI Header

* core module: defines a large set of common
textual requirements:

* paragraphs

* highlighted phrases

* names, dates, number, abbreviations...

* editorial tags

* notes, cross-references, bibliography

* Specialised structure modules for:

* "book like" prose, verse, and drama

* transcribed speech

* dictionaries and lexica

Taming the TEI Tiger 13

Additional modules
* sets of elements for specialised application areas

* can be mixed and matched ad lib

* currently provided:

* linking and alignment; analysis; feature
structures;

* certainty; physical transcription; textual
criticism,

* names and dates; graphs and trees; figures
and tables;

* language corpora, manuscript description....

Taming the TEI Tiger 14

The Chicago Pizza Model
A useful metaphor for expressing modularity. To build
a TEI pizza, take...

* the core modules

* whatever structural modules are needed

* the toppings of your choice

* your own modifications

(and document them in an ODD)

Taming the TEI Tiger 15

How does this model work?
* Each module corresponds with a section of the

main schema, within which

* declarations for each element are enclosed by a
pattern, which can be redefined (to remove its
contents)

* the status of patterns can be over-ridden in your
own schema

* declarations for elements make heavy use of
parameterised class system

Taming the TEI Tiger 16

An example
In a schema we write
include "tei.rnc" {

p = element parágrafo { content.p }

}

include "general.rnc"

include "figures.rnc"

include "linking.rnc" {

ab = notAllowed

}

which includes two modules; does one renaming;
and excludes one element.

Taming the TEI Tiger 17

Element Classes
* Most TEI elements are assigned to one or more

* element classes, identifying their syntactic
properties, or

* attribute classes, identifying their attributes

* In the schema, each class is represented by a
pattern

* This provides a (relatively) simple way of

* documenting and understanding the schema

* modifying content models

* facilitating customization

* An alternative way of doing architectural forms

Taming the TEI Tiger 18

Some TEI model classes
* divn: structural elements like divisions (<div>,

<div>, <div2>...)

* divtop: elements which can appear at the start
of a divn element (<head>, <epigraph>,
<byLine>...)

* chunk: paragraph-like elements
(<sp><p><lg>...)

* phrase: elements which appear within chunks
(<hi>,<foreign>, <date> ...)

Taming the TEI Tiger 19

TEI attribute classes
* global: attributes which are available to every

element (n, lang, id, TEIform)

* linking: attributes for elements which have
linking semantics (targType, targOrder, evaluate)

Taming the TEI Tiger 20

The TEIFORM attribute
Two main usages...

* protect applications from the effect of element
renaming

<titolo TEIform="title">...</titolo>

* protect applications from the effect of syntactic
sugar

<tag type="xyz">

can be rewritten as

<xyz TEIform="tag">

Taming the TEI Tiger 21

A case study: the Lampeter
corpus
See http://www.tu-
chemnitz.de/phil/english/real/lampeter/lamphome.htm
(or look in the Oxford Text Archive)

* Fairly typical requirements for language corpora

* light presentational tagging

* structural markup for access

* demographic information about text production

* small number of tags to ease data capture and
validation

* Implementation

* modules: core modules, plus four additional
modules

* some extensions, many exclusions

Taming the TEI Tiger 22

The Lampeter corpus view of the
TEI

include "tei.rnc"

include "general.rnc"

include "corpus.rnc"

include "figures.rnc"

include "transcr.rnc"

include "linking.rnc"

Taming the TEI Tiger 23

The Lampeter corpus extensions

analytic = notAllowed

biblStruct = notAllowed

hic desunt multa

supplied = notAllowed

class.phrase |= it

class.phrase |= ro

class.phrase |= sc

class.phrase |= su

class.phrase |= bo

class.phrase |= go

class.biblPart |= printer

class.biblPart |= pubFormat

class.biblPart |= bookSeller

class.demographic |= socecstatusPat

class.demographic |= biogNote

Taming the TEI Tiger 24

The Lampeter corpus extensions
(2)

it =

element it {

attributes.class.global, macro.phraseSeq

}

#Similar definitions for :

ro sc su bo go

printer pubFormat

bookSeller biogNote socecstatusPat

Taming the TEI Tiger 25

Three types of customization
1. Kill an element

ab = notAllowed

2. Add a new element to a class

MyList = element MyList {

attributes.class.global, (item)+

}

3. Rename an element

p = element parágrafo { content.p }

Taming the TEI Tiger 26

Possible practical answers
We may need to do some or all of:

* Define extensive additional modules, possibly
containing much syntactic sugar, for new domains

* Suck in external DTDs, like MathML, SVG, and
XHTML tables and forms (but we will need to
address name clashes and universal namespace
support may be a while coming)

* Use all and only those parts of the TEI we need to
avoid tag overload for authors

* Add convenience attributes (eg to bypass purist
XLink markup for URLs)

Taming the TEI Tiger 27

The author vs the editor?
Hold on: do we need to use the same schema for
authoring, editing, production, interchange, and
archive? The TEI philosophy allows us to:

1. develop sample documents for a new domain
using generic tools like <div> and type attributes

2. generate a private authoring DTD which uses
domain-specific language:

<! - memorandum marked up in TEIMEMO -->

<memo>

<front>

<from_opener>Ty Coon</from_opener>

<to_opener>Ev Angelist</to_opener>

<date>Today</date>

</front>

<body>

<div>

<p>Re your memorandum of <date>July 21st</date>, I think that

the chance of us switching to XML in this company is minimal.

See <xptr url="http://www.ourcompany.com/policy/"/>.

</p>

</div>

</body>

Taming the TEI Tiger 28

Why bother?
* The TEI is a well-known reference point

* Using the TEI enables

* sharing of data and resources

* shared modular software development

* lower learning curve and reduced training costs

* The TEI is stable, rigorous, and well-documented

* The TEI is also flexible, customizable, and
extensible in documented ways

* The architectural approach offers the best
compromise for practical work.

