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Today’s topics
• The TEI and its architecture

• Working with the schema generator

How does the TEI scheme work? In today’s exercise,
you’ll learn how to build your very own schema.
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XML : a licence for ill?
XML allows you to make up your own tags, and
doesn’t require a DTD...

* The XML concept is dangerously powerful:

* XML elements are light in semantics

* one man’s <p> is another’s <para> (or is it?)

* the appearance of interchangeability may be
worse than its absence

* But XML is still too good to ignore

* mainstream software development

* proliferation of tools

* the future of the web
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What kind out of grammar do
you need?
* To get the best out of XML, you need two kinds of

grammar:

* document type declaration: names for your
elements, attributes, entities, notations
(syntactic constraints)

* document type definition: usage and meaning
constraints on the foregoing

* Published specifications usually combine the two,
hence they lack modularity
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Some answers
* Rolling your own schema

* ... starting from scratch

* ... by combining snippets, preferably from an
existing conceptual framework (aka
architecture)

* customizing someone else’s schema

* definitions should be meaningful within a
given user community

* declarations should be appropriate to a given
set of applications

* The TEI provides a good candidate architecture

Namespaces do not provide the whole answer
(though at least they remind us the problem exists)
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The T E what?
* Originally, a research project within the humanities

* Sponsored by three professional associations

* Funded 1990-1994 by US NEH, EU LE
Programme et al

* Major influences

* digital libraries and text collections

* language corpora

* scholarly datasets

* International consortium established June 1999
(see http://www.tei-c.org/)
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Goals of the TEI
* better interchange and integration of scholarly

data

* support for all texts, in all languages, from all
periods

* guidance for the perplexed: what to encode —
hence, a user-driven codification of existing best
practice

* assistance for the specialist: how to encode —
hence, a loose framework into which
unpredictable extensions can be fitted

These apparently incompatible goals result in a
highly flexible, modular, environment.
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TEI Deliverables
* A set of recommendations for text encoding,

covering both generic text structures and some
highly specific areas based on (but not limited by)
existing practice

* A very large collection of element definitions
combined into a very loose document type
declaration

* A mechanism for creating multiple views
(schemas) of the foregoing

* One such view and associated tutorial: TEI Lite
(http://www.tei-c.org/TEI/Lite/)

for the full picture see
http://www.tei-c.org/TEI/Guidelines/
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Legacy of the TEI
* a way of looking at what ‘text’ really is

* a codification of current scholarly practice

* (crucially) a set of shared assumptions and
priorities about the digital agenda:

* focus on content and function (rather than
presentation)

* identify generic solutions (rather than
application-specific ones)
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Designing a schema for the TEI
* How can a single mark-up scheme handle a large

variety of requirements ?

* all texts are alike

* every text is different

* Learn from the database designers

* one construct, many views

* each view a selection from the whole
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How many schemas do we
need?
* one (the Corporate or WKWBFY approach)

* none (the Anarchic or NWEUMP approach)

* as many as it takes (the Mixed Economy or XML
approach)

or a single main schema with many faces (a British
schema)
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Core modules
* infrastructure module: element classes and

macros

* detailed metadata provision: the TEI Header

* core module: defines a large set of common
textual requirements:

* paragraphs

* highlighted phrases

* names, dates, number, abbreviations...

* editorial tags

* notes, cross-references, bibliography

* Specialised structure modules for:

* "book like" prose, verse, and drama

* transcribed speech

* dictionaries and lexica



Taming the TEI Tiger 13

Additional modules
* sets of elements for specialised application areas

* can be mixed and matched ad lib

* currently provided:

* linking and alignment; analysis; feature
structures;

* certainty; physical transcription; textual
criticism,

* names and dates; graphs and trees; figures
and tables;

* language corpora, manuscript description....
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The Chicago Pizza Model
A useful metaphor for expressing modularity. To build
a TEI pizza, take...

* the core modules

* whatever structural modules are needed

* the toppings of your choice

* your own modifications

(and document them in an ODD)
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How does this model work?
* Each module corresponds with a section of the

main schema, within which

* declarations for each element are enclosed by a
pattern, which can be redefined (to remove its
contents)

* the status of patterns can be over-ridden in your
own schema

* declarations for elements make heavy use of
parameterised class system
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An example
In a schema we write
include "tei.rnc" {

p = element parágrafo { content.p }

}

include "general.rnc"

include "figures.rnc"

include "linking.rnc" {

ab = notAllowed

}

which includes two modules; does one renaming;
and excludes one element.
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Element Classes
* Most TEI elements are assigned to one or more

* element classes, identifying their syntactic
properties, or

* attribute classes, identifying their attributes

* In the schema, each class is represented by a
pattern

* This provides a (relatively) simple way of

* documenting and understanding the schema

* modifying content models

* facilitating customization

* An alternative way of doing architectural forms
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Some TEI model classes
* divn: structural elements like divisions (<div>,

<div>, <div2>...)

* divtop: elements which can appear at the start
of a divn element (<head>, <epigraph>,
<byLine>...)

* chunk: paragraph-like elements
(<sp><p><lg>...)

* phrase: elements which appear within chunks
(<hi>,<foreign>, <date> ...)
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TEI attribute classes
* global: attributes which are available to every

element (n, lang, id, TEIform)

* linking: attributes for elements which have
linking semantics (targType, targOrder, evaluate)
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The TEIFORM attribute
Two main usages...

* protect applications from the effect of element
renaming

<titolo TEIform="title">...</titolo>

* protect applications from the effect of syntactic
sugar

<tag type="xyz">

can be rewritten as

<xyz TEIform="tag">
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A case study: the Lampeter
corpus
See http://www.tu-
chemnitz.de/phil/english/real/lampeter/lamphome.htm
(or look in the Oxford Text Archive)

* Fairly typical requirements for language corpora

* light presentational tagging

* structural markup for access

* demographic information about text production

* small number of tags to ease data capture and
validation

* Implementation

* modules: core modules, plus four additional
modules

* some extensions, many exclusions
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The Lampeter corpus view of the
TEI

include "tei.rnc"

include "general.rnc"

include "corpus.rnc"

include "figures.rnc"

include "transcr.rnc"

include "linking.rnc"
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The Lampeter corpus extensions

analytic = notAllowed

biblStruct = notAllowed

# hic desunt multa

supplied = notAllowed

class.phrase |= it

class.phrase |= ro

class.phrase |= sc

class.phrase |= su

class.phrase |= bo

class.phrase |= go

class.biblPart |= printer

class.biblPart |= pubFormat

class.biblPart |= bookSeller

class.demographic |= socecstatusPat

class.demographic |= biogNote
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The Lampeter corpus extensions
(2)

it =

element it {

attributes.class.global, macro.phraseSeq

}

#Similar definitions for :

# ro sc su bo go

# printer pubFormat

# bookSeller biogNote socecstatusPat
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Three types of customization
1. Kill an element

ab = notAllowed

2. Add a new element to a class

MyList = element MyList {

attributes.class.global, (item)+

}

3. Rename an element

p = element parágrafo { content.p }
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Possible practical answers
We may need to do some or all of:

* Define extensive additional modules, possibly
containing much syntactic sugar, for new domains

* Suck in external DTDs, like MathML, SVG, and
XHTML tables and forms (but we will need to
address name clashes and universal namespace
support may be a while coming)

* Use all and only those parts of the TEI we need to
avoid tag overload for authors

* Add convenience attributes (eg to bypass purist
XLink markup for URLs)
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The author vs the editor?
Hold on: do we need to use the same schema for
authoring, editing, production, interchange, and
archive? The TEI philosophy allows us to:

1. develop sample documents for a new domain
using generic tools like <div> and type attributes

2. generate a private authoring DTD which uses
domain-specific language:

<! - memorandum marked up in TEIMEMO -->

<memo>

<front>

<from_opener>Ty Coon</from_opener>

<to_opener>Ev Angelist</to_opener>

<date>Today</date>

</front>

<body>

<div>

<p>Re your memorandum of <date>July 21st</date>, I think that

the chance of us switching to XML in this company is minimal.

See <xptr url="http://www.ourcompany.com/policy/"/>.

</p>

</div>

</body>
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Why bother?
* The TEI is a well-known reference point

* Using the TEI enables

* sharing of data and resources

* shared modular software development

* lower learning curve and reduced training costs

* The TEI is stable, rigorous, and well-documented

* The TEI is also flexible, customizable, and
extensible in documented ways

* The architectural approach offers the best
compromise for practical work.


