
25 Writing System Declaration
This chapter may be substantially revised or withdrawn in the next edition of these Guidelines

The writing system declarationor WSD is an auxiliary document which provides information on the
methods used to transcribe portions of text in a particular language and script. We use the termwriting
systemto mean a given method of representing a particular language, in a particular script or alphabet;
the WSD specifies one method of representing a given writing system in electronic form. A single WSD
thus links three distinct objects:

• the language in question

• the writing system (script, alphabet, syllabary) used to write the language

• the coded character set, entity names, or transliteration scheme used to represent the graphic
characters of the writing system

Different natural languages thus have different writing system declarations, even if they use the same
script. Different methods used to write the same language (e.g. Cyrillic or Latin encoding of Serbo-
Croatian), and different methods of representing the same script in electronic form (e.g. different coded
character sets such as ASCII or EBCDIC, or different transliteration schemes) similarly must use different
writing system declarations.

This chapter describes first the overall structure of the WSD (section25.1Overall Structure of Writing
System Declaration), and then the specific elements used to document the natural language, writing
system, coded character sets, entity names, and transliteration schemes united by the WSD. Section25.6
Linkage between WSD and Main Documentdescribes how the WSD is associated with different portions
of a document. Predefined TEI writing system declarations, which should suffice for many uses, are
described in section25.7Predefined TEI WSDs. There follows a brief description of how to create a new
WSD on the basis of an existing WSD. Finally, in section25.8Details of WSD Semanticswe provide a
formal discussion of the semantics of the writing system declaration.

25.1 Overall Structure of Writing System Declaration
A writing system declaration is a distinct auxiliary document, separate from any transcription for which
it is used. A TEI document specifies the writing system declarations applicable to it by means of
declarations in its header, and by means of its use of the globallang attribute, as further specified in
section25.6Linkage between WSD and Main Document. Each writing system declaration is itself a free-
standing document, encoded as a single<writingSystemDeclaration> element, and containing the
following elements:
<writingSystemDeclaration> declares the coded character set, transliteration scheme, or entity set

used to transcribe a given writing system of a given language. Attributes include:
name gives a formal name for the writing system declaration

Values any string of characters
date gives the date on which the writing system declaration was last revised.

Values A date in valid ISO format.
<language> identifies the language being described in the writing system declaration. Attributes

include:
iso639 gives the two-letter standard language code from ISO 639:1988 (or its revised version

ISO 639-1 when that becomes standard), or a three-letter code from ISO 639-2: 1998.
Values any two- or three-letter code included in ISO 639; if the language is not included

in the list in ISO 639, the value should be given as the empty string.
<script> contains a prose description of the script declared by a writing system declaration.
<direction> specifies one or more conventional directions in which a language is written using a

given script. Attributes include:
chars (characters) indicates the order in which characters within a line are conventionally

presented in this writing system
Suggested values include:

March 2002 587 TEI Consortium

25 Writing System Declaration

LR left to right
RL right to left
TB top to bottom
BT bottom to top

lines indicates the order in which lines conventionally follow each other in this writing
system.
Suggested values include:

TB top to bottom
BT bottom to top
LR left to right
RL right to left

<characters> contains a specification of the characters used in a particular writing system to write a
particular language, and of how those characters are represented in electronic form.

<note> (in a writing system) contains a note of any type.
All elements in the writing system declaration may bear either of the following two attributes:
id gives a unique identifier for the element.
lang gives the language in which the content of the element is written.

These attributes function in the same way as the globalid and lang attributes of the main TEI DTD
(although for technical reasons the latter is declared differently): the former provides a unique identifier
for the element, and the latter identifies the language in which the contents of the element are expressed,
using a code from ISO 639.

The overall structure of a writing system declaration is thus as follows:
<writingSystemDeclaration lang='eng' name='...' date='1993-05-29'>
<language iso639='...'>

<!-- name of language here -->
</language>

<script>
<!-- description of script here ... -->
</script>

<direction chars='LR' lines='TB'/>
<characters>

<!-- description of character inventory here ... -->
</characters>

</writingSystemDeclaration>

The attributesdate andname are required on the<writingSystemDeclaration> element. Thedate
attribute is used to specify the date on which the WSD was written or last changed; this must be given in
the formatyyyy-mm-dd. (As defined by ISO 8601: 2000(E),Data elements and interchange formats —
Information interchange — Representation of dates and times, section 5.2.1.1, extended format.)

The name attribute is used to assign a formal name to the writing system declaration, for references
to it from elsewhere. It is recommended that the name be constructed as aformal public identifier, as
described above (2.7 Entities); for purposes of writing system declarations, this means it should follow
the pattern of the following examples:

-//TEI P2: 1993//NOTATION WSD for Modern English//EN
-//WWP 1993//NOTATION WSD for 17th-century English//EN
-//OTA 1991//NOTATION WSD for Old English//EN
-//GLDV 1997//NOTATION WSD Mittelhochdeutsch//DE

The other elements of the WSD are described in the following sections.

The DTD for writing system declarations is included in fileteiwsd2.dtd; a writing system declaration
will thus begin with a document type declaration invoking that file:

<!DOCTYPE writingSystemDeclaration
PUBLIC "-//TEI P4//DTD Auxiliary Document Type:
Writing System Declaration//EN"

"teiwsd2.dtd" >

The formal declaration of the writing system declaration is as follows:

TEI Consortium 588 March 2002

25.1 Overall Structure of Writing System Declaration

<!-- 25.1: Writing System Declaration-->
<!--Text Encoding Initiative Consortium:
Guidelines for Electronic Text Encoding and Interchange.
Document TEI P4, 2002.
Copyright (c) 2002 TEI Consortium. Permission to copy in any form
is granted, provided this notice is included in all copies.
These materials may not be altered; modifications to these DTDs should
be performed only as specified by the Guidelines, for example in the
chapter entitled 'Modifying the TEI DTD'
These materials are subject to revision by the TEI Consortium. Current versions
are available from the Consortium website at http://www.tei-c.org-->
<!ENTITY % INHERITED '#IMPLIED' >
<!ENTITY % ISO-date 'CDATA' >
<!--Embed entities for TEI generic identifiers.-->
<!ENTITY % TEI.elementNames PUBLIC '-//TEI P4//ENTITIES Generic
Identifiers//EN' 'teigis2.ent' >%TEI.elementNames;
<!--Insert switch for XML/SGML -->
<!ENTITY % TEI.XML 'IGNORE' >
<![%TEI.XML;[
<!ENTITY % om.RO '' >
<!ENTITY % om.RR '' >
]]>
<!ENTITY % om.RO '- O' >
<!ENTITY % om.RR '- -' >
<!ENTITY % a.global '

id ID #IMPLIED
lang CDATA %INHERITED;'>

<!ELEMENT writingSystemDeclaration %om.RR; (language, script,
direction*, characters, note*)>
<!ATTLIST writingSystemDeclaration

%a.global;
name CDATA #REQUIRED
date %ISO-date; #REQUIRED
TEIform CDATA 'writingSystemDeclaration' >

<!--declarations from 25.2: Language identification inserted here -->
<!--declarations from 25.3: Script and writing direction inserted here -->
<!--declarations from 25.4.1: Base components inserted here -->
<!--declarations from 25.4.2: Exceptions to the base components inserted here -->
<!--declarations from 25.5: Notes inserted here -->
<!-- end of 25.1-->

25.2 Identifying the Language
The <language> element is used to name the language associated with the WSD. Itsiso639 attribute
gives the ISO standard code for the language as defined byISO 639: 1988. Code for the representation
of names of languages, or its successor standards.
<language> identifies the language being described in the writing system declaration. Attributes

include:
iso639 gives the two-letter standard language code from ISO 639:1988 (or its revised version

ISO 639-1 when that becomes standard), or a three-letter code from ISO 639-2: 1998.
Values any two- or three-letter code included in ISO 639; if the language is not included

in the list in ISO 639, the value should be given as the empty string.

If the language in question is not included in the list in ISO 639, the value of the attributeiso639 should
be the empty string, as in the following example:

<language iso639=''>Various</language>

The<language> element should not be confused with the globallang attribute; the element identifies the
language whose writing system is being documented, while the attribute identifies the language in which
the description is being written. A writing system declaration for classical Greek, for example, which
itself is written in English, would have the valueeng for the lang attribute on the top-level element, and
the valuegrc for the iso639 attribute on the<language> element:

March 2002 589 TEI Consortium

25 Writing System Declaration

<writingSystemDeclaration
id='GRC.beta'
lang='eng'
name='-//TEI P2: 1993//NOTATION WSD for TLG Beta Code

transliteration of ancient greek//EN'
date='1993-05-29'>

<language iso639='grc'>Classical Greek. This WSD documents the Beta
transcription code for classical Greek developed by the Thesaurus
Linguae Graecae of the University of California, Irvine.</language>

<!-- ... -->
</writingSystemDeclaration>

Normally, the language described is a natural language; in some cases, however, artificial languages,
dialects, or other sublanguages may be usefully regarded as a language and documented in a writing
system declaration. When a sublanguage is documented, a description of the sublanguage should be
included in the<language> element:

<language iso639='jpn'>
Japanese (specialized writing system for waka)

</language>

When a writing system declaration is prepared solely in order to document a coded character set or entity
set suitable for use with many natural languages, the content of the<language> element should be
“Various” (or the equivalent in the language of the WSD):

<writingSystemDeclaration
lang='fra'
name='-//TEI P2: 1993//NOTATION WSD for ISO 646 IRV//FR'
date='1993-05-29'>

<language iso639=''>Plusieurs</language>
<!-- ... -->

</writingSystemDeclaration>

The<language> element is formally defined thus:
<!-- 25.2: Language identification-->
<!ELEMENT language %om.RO; (#PCDATA)>
<!ATTLIST language

%a.global;
iso639 CDATA #REQUIRED
TEIform CDATA 'language' >

<!-- end of 25.2-->

25.3 Describing the Writing System
The writing system itself is described in general terms using the following elements:
<script> contains a prose description of the script declared by a writing system declaration.
<direction> specifies one or more conventional directions in which a language is written using a

given script. Attributes include:
chars (characters) indicates the order in which characters within a line are conventionally

presented in this writing system
Suggested values include:

LR left to right
RL right to left
TB top to bottom
BT bottom to top

lines indicates the order in which lines conventionally follow each other in this writing
system.
Suggested values include:

TB top to bottom
BT bottom to top
LR left to right
RL right to left

TEI Consortium 590 March 2002

25.3 Describing the Writing System

The <script> element contains a prose description of the script, alphabet, syllabary, or other system
of writing used to write the language in question. The<direction> element indicates the direction(s)
in which the script is conventionally written. Both these elements are provided for the sake of human
readers; neither is likely to be suited to machine processing without human intervention.

The Latin alphabet conventionally used to write English, for example, might be described thus:
<script>Latin alphabet (with diacritics for loan words)</script>
<direction chars='LR' lines='TB'/>

The chars and lines attributes are used to indicate the direction in which characters within a line, and
lines on the page, may legitimately be written using the script in question. If more than one direction is
possible, the<direction> element may repeat or its attributes may be given more complex values. A
script written vertically top to bottom, with lines arranged either left to right or right to left, for example,
might be declared either thus:

<direction chars='TB' lines='LR'/>
<direction chars='TB' lines='RL'/>

or thus:
<direction chars='TB' lines='LR RL'/>

In very complex cases, the attributes may be given prose values:
<direction chars='boustrophedon: LR, then RL, then LR, etc.' lines='TB'/>

or the element may be omitted entirely, in which case experts on the script should be consulted for advice
on proper processing.

It should be noted that the<direction> element describes conventional display only: all scripts are
subject to unusual treatment for aesthetic or other reasons, and such unusual treatment need not be
foreseen here. (The Latin alphabet, for example, although conventionally written left-to-right, top-to-
bottom, can be set vertically in signs or in other special cases.) Unusual methods of arranging the text on
a page are best documented within the document instance by means of the globalrend attribute.

The<script> and<direction> elements are declared thus:
<!-- 25.3: Script and writing direction-->
<!ELEMENT script %om.RO; (#PCDATA)>
<!ATTLIST script

%a.global;
TEIform CDATA 'script' >

<!ELEMENT direction %om.RO; EMPTY>
<!ATTLIST direction

%a.global;
chars CDATA #REQUIRED
lines CDATA #REQUIRED
TEIform CDATA 'direction' >

<!-- end of 25.3-->

25.4 Documenting the Character Set and Its Encoding

25.4.1 Base Components of the WSD
The characters or graphic symbols of the writing system are documented in the<characters> element
of the WSD. This documentation can take any of the following forms:

• reference to an international standard, national standard, or private coded character set

• reference to a public set of entities

• reference to another WSD which documents the same script and the same methods of
representing it electronically

• formal declaration of each graphic unit in the writing system

• a combination of the above: reference to one or more standard coded character sets, entity
sets, or writing system declarations, followed by individual declaration of all exceptions

March 2002 591 TEI Consortium

25 Writing System Declaration

The coded character sets, entity sets, and external WSDs referred to are called thebase componentsof
the writing system declaration. The base components of a WSD are declared within the<characters>
element using the following elements:
<characters> contains a specification of the characters used in a particular writing system to write a

particular language, and of how those characters are represented in electronic form.
<codedCharSet> identifies a public or private coded character set which is used as a basic compo-

nent of a writing system declaration.
<baseWsd> identifies a writing system declaration whose mappings among characters, forms, entity

names, and bit patterns are to be incorporated (possibly with modifications) in this writing system
declaration.

<entitySet> identifies a public or private entity set whose mappings between entity names and char-
acters are to be incorporated (perhaps with modifications) into this writing system declaration.

The elements<codedCharSet>, <baseWsd>, and<entitySet> are all members of the classbaseS-
tandardand inherit from it the following attributes:
name gives the normal citation form for the standard being referred to.
authority indicates the authority responsible for issuing the standard being referred to: the TEI, the

International Organization for Standardization (ISO), a national body, or a private body. Legal
values are:
tei the base writing system declaration is a standard WSD issued by the Text Encoding

Initiative
iso the character set or entity set was issued by ISO
national the character set or entity set was issued by a national standards body
private the writing system declaration, character set, or entity set was issued publicly by

a private organization or project
none the writing system declaration, character set, or entity set has not been publicly issued

by any organization; it is specific to an individual text or project

Some simple examples of the use of these elements follow:
<codedCharSet name='ANSI X3.4' authority='national'/>
<codedCharSet name='ISO 646: 1991' authority='iso'/>
<baseWsd name='-//TEI P4: 2001//WSD ISO 8859-1//EN'

authority='tei'/>
<entitySet name='ISO 8879:1986//ENTITIES Added Latin 1//EN'

authority='iso'/>

The base components identify the set of characters used in the writing system, and further specify, for
each character, the string(s) of bytes and entity names used to encode it in the text. This information
may be modified by further information given within the<exceptions> element, as described below in
section25.4.2Exceptions in the WSD.

The elements for identifying the base components of the writing system declaration are declared thus:
<!-- 25.4.1: Base components-->
<!ELEMENT characters %om.RO; (codedCharSet*, baseWsd*,

entitySet*, exceptions?) >
<!ATTLIST characters

%a.global;
TEIform CDATA 'characters' >

<!ENTITY % a.baseStandard '
name CDATA #REQUIRED
authority (tei | iso | national | private | none) #REQUIRED'>

<!ELEMENT codedCharSet %om.RO; EMPTY>
<!ATTLIST codedCharSet

%a.global;
%a.baseStandard;
TEIform CDATA 'codedCharSet' >

<!ELEMENT baseWsd %om.RO; EMPTY>
<!ATTLIST baseWsd

%a.global;
%a.baseStandard;

TEI Consortium 592 March 2002

25.4 Documenting the Character Set and Its Encoding

TEIform CDATA 'baseWsd' >
<!ELEMENT entitySet %om.RO; EMPTY>
<!ATTLIST entitySet

%a.global;
%a.baseStandard;
TEIform CDATA 'entitySet' >

<!-- end of 25.4.1-->

25.4.2 Exceptions in the WSD
The<exceptions> element contains definitions for any character which differs in any respect from the
specifications contained in the base components of the WSD. If no base components are named, then
every character in the writing system must be defined explicitly.

The documentation for each character in the writing system indicates at least the following:

• the string of bytes used to represent the character

• whether the character is a letter, a punctuation mark, a diacritical mark, or falls into some other
class

• a brief conventional name or description of the character

• any standard or local entity names used for the character

• the position of the character in the Universal Character Set (UCS) defined by ISO 10646, if
known

In addition, images of the character encoded in a graphics format or other notation may be associated with
the character as internal or external figures. This information is encoded using the following elements:
<exceptions> documents ways in which a writing system declaration differs from the coded character

sets, base writing system declarations, and entity sets which form its bases.
<character> defines one unit in a writing system, supplementing or overriding information provided

in the base coded character sets, writing system declarations, and entity sets. Attributes include:
class describes the function of the character using a prescribed classification.

Legal values are:
lexical character is used in writing words (lexical items) of the language

(includes members of syllabaries and ideographic systems, as well as
composite letter-plus-diacritic combinations)

punc character is a punctuation mark which does not appear within lexical
items

lexpunc character can appear as a normal punctuation mark, but can also
appear within a lexical item (and should usually, when occurring between
two lexical characters, be treated as lexical—in English, hyphen and
apostrophe are typically treated as members of this class)

digit character is an Arabic decimal numeral (0, 1, ... 9) (does not include
superscript numbers, circled numbers, numeric dingbats, etc.)

space character represents some form of white space (space character, hori-
zontal or vertical tab, newline, etc.)

dl character is a diacritic applying to the following lexical character
ld character is a diacritic applying to the preceding lexical character
dia character is a diacritic which is explicitly joined to a lexical character by

a joiner character
joiner character is used to join a diacritic to the lexical character to which it

applies (in some encoding schemes, the backspace control character may
be used as a joiner; in others, a graphic character is used for the same
function)

other character does not fall into any of the other classes (dingbats and other
unusual characters fall here)

<desc> (in a writing system declaration) contains a description of a character or character form.

March 2002 593 TEI Consortium

25 Writing System Declaration

<form> identifies one letter form taken by a particular character in a writing system declaration.
Attributes include:
string gives the byte string used to encode the letter form in the text.

Values any string of characters (often a single byte)
codedCharSet (coded character set) specifies which base coded character set thestring

value occurs in.
Values a reference to the identifier of a<codedCharSet> element in the current writing

system declaration.
entityStd (standard entity name) gives the name of one or more entities defined for this

character form in some standard entity set(s).
Values One or more valid SGML entity names declared in the document type definition

of the WSD; the entity must also be included in an entity set mentioned in an
<entitySet> declaration in the current writing system declaration or in some
base writing system referred to by a<baseWsd> element.

entityLoc (local entity name) gives one or more entity names used locally for this character
form.
Values One or more valid SGML entity names declared in the document type definition

of the WSD; the entity must also be included in an entity set mentioned in an
<entitySet> declaration in the current writing system declaration or in some
base writing system referred to by a<baseWsd> element.

ucs-4 (universal-character-set code) gives the position of the character form in the thirty-two
bit ‘universal character set’ defined by ISO 10646.
Values one or more sets of two or four two-digit hexadecimal numbers giving a

valid ISO 10646 code point for the character form; for legibility the two-digit
hexadecimal numbers should be separated by hyphens. If more than one UCS-4
code is associated with a given character form, the two UCS-4 codes should be
given separated by blanks. If the character form is associated with a sequence
of UCS-4 codes (e.g. a base character followed by one or more non-spacing
diacritics), then the components of the sequence should be separated by+.

<figure> (in a writing system declaration) contains an image of a character form, stored in-line in
some declared notation. Attributes include:
notation identifies the notation in which the figure is encoded.

Values a valid name associated with a given notation by means of an NOTATION
declaration in the document type definition.

<extFigure> (in a writing system declaration) refers to a figure or illustration depicting the character
form, which is stored in some declared notation external to the text. Attributes include:
notation identifies the notation in which the figure is stored.

Values a valid name associated with a given notation by means of a NOTATION
declaration in the document type definition.

entity gives the name of an external entity which contains the figure.
Values a valid name associated with the external entity by means of an ENTITY

declaration in the document type declaration .

The<exceptions> element contains a series of<character> elements only, each of which may contain
descriptions of the character (including its name), notes, and a series of<form> elements documenting
the different forms the character can take. Attributes on the<character> and<form> elements are used
to convey the information mentioned above: byte string, entity names, UCS-4 code, etc.

A simple example:
<character class='lexical'>

<form string='A' ucs-4='0041'>
<desc>Latin capital letter A</desc>

</form>
</character>

TEI Consortium 594 March 2002

25.4 Documenting the Character Set and Its Encoding

When transliteration schemes are used, thestring used to encode the character will typically be in a
different alphabet:

<character class='lexical'>
<form string='*G' entityStd="Ggr" ucs-4='0393'>

<desc>Greek capital letter Gamma</desc>
</form>

</character>

The UCS-4 code is given as eight hexadecimal digits, one for each four bits of the thirty-two-bit value.
For legibility a hyphen may be inserted as a separator after the fourth hexadecimal digit:00000308 has
the same meaning as0000-0308. Since in almost all cases at present the leading sixteen bits are zero,
however, by convention the leading four hexadecimal zeros may be dropped entirely: the value0308 is
identical in meaning to the value0000-0308.

In some cases, the character is represented not as a single UCS character but as a sequence of such
characters; in this case, each thirty-two-bit value except the last must be followed by a plus sign:

<character class='lexical'>
<form string='*=+U' entityStd="Ucdgr" ucs-4='03A5+0302+0308'>

<desc>Greek capital letter Upsilon with
circumflex and diaresis</desc>

</form>
</character>

If a given<character> element has more than one encoding using ISO 10646 (e.g. both as “a-umlaut”
and as “a” plus “umlaut”), then both encodings may be given, separated by blanks:

<character class='lexical'>
<form string=''

entityStd="Auml"
ucs-4='0041+0308 00C4' >

<desc>Latin capital letter A with umlaut</desc>
</form>

</character>

In most cases, identifying the character or character form by means of its UCS-4 code will suffice to
identify the character for all later users of the WSD. In some cases, however, further information must be
provided. This may be provided in a<note> attached to the<character> or <form> element:

<character class='lexical'>
<form string='N'

entityLoc="nn"
ucs-4="0274" >

<desc>Standard ms symbol for double n.</desc>
</form>
<note>This character has the form of a capital-letter N,

but is written the same height as a lower-case N.
Its appearance is thus that of UCS-4 0274, but it
does not have the same semantics.</note>

</character>

In some cases, it will be necessary or useful to provide an image of the character in question, or to refer
to a standard reference work for such an image. The following<character> element might be used to
describe, for example, a common Old French abbreviation for “est”, for which the local entityest has
been defined:

<character class='lexical'>
<form string='' entityLoc="est">

<desc>Old French abbreviation for 'est': lowercase
'e' with a tilde or macron above.</desc>

<note>For an image of this character, see
Cappelli, p. 113, column 1, line 4
(leftmost and rightmost item).</note>

</form>
</character>

March 2002 595 TEI Consortium

25 Writing System Declaration

Here, “Cappelli” is the name of a standard reference work which may be consulted to see what the
character in question looks like.165

Where recourse to reference works is impossible, a picture of the character may be encoded using any
standard graphics format, and associated with the character by standard SGML techniques. The SGML
document must then have:

• a notation declaration for the graphics format used
• an external entity declaration for the file containing the image
• an<extFigure> element to name the notation and the entity

For a discussion of graphic images and of the declaration of notations, see chapter22 Tables, Formulae,
and Graphics. If the Old French abbreviation is encoded using CGM (Computer Graphics Metafile)
format in a file calledest.cgm, then it may be associated with the appropriate character declaration as
follows. In the DTD subset of the WSD, the following declarations are required:

<!NOTATION cgm PUBLIC 'ISO 8632/2//NOTATION
Computer Graphics Metafile Character encoding//EN'>

<!ENTITY estFigure SYSTEM 'est.cgm' NDATA cgm>

In the body of the WSD itself:
<character class='lexical'>

<form string=''
entityLoc="est">

<desc>Old French abbreviation for 'est': lowercase
'e' with a tilde or macron above.</desc>

<extFigure notation='cgm' entity='estFigure'/>
<note>For an image of this character, see

Cappelli, p. 110, column 1, line 4
(leftmost and rightmost item).</note>

</form>
</character>

Despite now having a picture of the character, we retain the prose description and reference to Cappelli,
for the sake of those without ready access to the appropriate graphics processors.

The<exceptions> element and its contents are declared thus:
<!-- 25.4.2: Exceptions to the base components-->
<!ELEMENT exceptions %om.RO; (character*)>
<!ATTLIST exceptions

%a.global;
TEIform CDATA 'exceptions' >

<!ELEMENT character %om.RO; (desc*, form+, note*)>
<!ATTLIST character

%a.global;
class (lexical | punc | lexpunc | digit | space | DL | LD | dia | joiner | other)

"lexical"
TEIform CDATA 'character' >

<!ELEMENT desc %om.RO; (#PCDATA)>
<!ATTLIST desc

%a.global;
TEIform CDATA 'desc' >

<!ELEMENT form %om.RO; (desc+, (figure | extFigure)*, note*)>
<!ATTLIST form

%a.global;
string CDATA #IMPLIED
codedCharSet IDREF #IMPLIED
entityStd ENTITIES #IMPLIED
entityLoc ENTITIES #IMPLIED
ucs-4 CDATA #IMPLIED
TEIform CDATA 'form' >

165 Dizionario di Abbreviature latine ed italianeper cura di Adriano Cappelli, 6th ed. (Milan: Ulrico Hoepli, 1979). This work on
Latin abbreviations might be less convenient for the purpose than one concentrating on Old French, but it is more widely used than
any other.

TEI Consortium 596 March 2002

25.4 Documenting the Character Set and Its Encoding

<!ELEMENT figure %om.RR; (#PCDATA)>
<!ATTLIST figure

%a.global;
notation CDATA #REQUIRED
TEIform CDATA 'figure' >

<!ELEMENT extFigure %om.RO; EMPTY>
<!ATTLIST extFigure

%a.global;
notation CDATA #REQUIRED
entity CDATA #REQUIRED
TEIform CDATA 'extFigure' >

<!-- end of 25.4.2-->

25.4.3 Documenting Coded Character Sets and Entity Sets
Public or private coded character sets and entity sets may be usefully documented using WSDs; the
WSD will make explicit some information (such as the UCS-4 code) not normally given explicitly in
character set standards or public entity sets. The coded character set or entity set being documented
should be included by means of a<codedCharSet> or <entitySet> element; the<exceptions>
element should include one<character> element for each character included in the character set or
the entity set. Deciding whether to treat two entities or two bit patterns as separate characters or as forms
of the same character will require knowledge of the script involved, and different encoders may reach
different decisions. In cases of doubt, though, it is usually acceptable practice to treat each bit pattern in
a coded character set, and each entity in an entity set, as a distinct character.
A non-standard local coded character set (e.g. an EBCDIC character set) may be documented in a WSD
by defining one<character> element for each printable code point in the character set, adding the names
of standard (and local) entities and UCS-4 codes as appropriate. Since this extra information is useful
in packing documents for interchange, and in processing pattern arguments in the TEI extended-pointer
syntax described in section14.2Extended Pointers, those responsible for a local installation are strongly
encouraged to document the local system character set in a WSD, if it is not already so documented.

25.4.4 Documenting Transliteration Schemes
When a script is encoded not in a character set designed for it, but in one designed for another script, (e.g.
Greek encoded using the Latin alphabet), a transliteration scheme is necessary. In documenting such a
transliteration scheme, the coded character set actually in use should be named as a base component.
An <exceptions> element can then be used to override the normal meaning of the individual byte
strings used in the transliteration. For example, the following<character> element overrides the usual
association of the byte representingA with the Latin letterA and substitutes instead an association with
the Greek letter alpha:

<character class='lexical'>
<form string='A' entityStd="agr" ucs-4='03B1'>

<desc>Greek small letter alpha</desc>
</form>

</character>

Care should be taken in choosing or developing transliteration schemes to ensure that they are unambigu-
ously reversible.

25.5 Notes in the WSD
Notes on the WSD, individual characters, or individual character forms may be included in the<note>
element at the appropriate level.
<note> (in a writing system) contains a note of any type.
Unlike its counterpart in the main TEI DTD, the<note> element within the writing system declaration
may contain no paragraphs and no phrase-level elements: only character data. It is formally declared
thus:

<!-- 25.5: Notes-->
<!ELEMENT note %om.RO; (#PCDATA)>
<!ATTLIST note

%a.global;
TEIform CDATA 'note' >

<!-- end of 25.5-->

March 2002 597 TEI Consortium

25 Writing System Declaration

25.6 Linkage between WSD and Main Document
The writing system declaration is associated with different portions of a main document by means of
the globallang attribute. This attribute is defined as an IDREF and its value must be the identifier on
a <language> element within the TEI header of the main document. The<language> element in turn
provides, in itswsd attribute, the name of the entity (which usually resolves to an external file) containing
the writing system declaration associated with thatlang value. For a more detailed account of this process,
compare the discussion in section26.1Linking a TEI Text to Feature System Declarations.

A default writing system declaration may be associated with any TEI document by supplying a value
for the lang attribute on the outermost element (<TEI.2> or <teiCorpus.2>). This lang attribute is
required to point at a<language> element in the TEI header, which in turn is required to indicate an
entity containing the writing system declaration associated with that language.

The following schematic shows how this can be achieved:
<!DOCTYPE TEI.2 PUBLIC "-//TEI P4//DTD Main Document Type//EN" "tei2.dtd" [
<!ENTITY % TEI.prose "INCLUDE">
<!ENTITY % TEI.XML "INCLUDE">
<!NOTATION wsd PUBLIC '-//TEI P3-1994//NOTATION Writing System Declaration//EN'>
<!ENTITY myWSD SYSTEM "myWSD.xml" NDATA wsd>
]>
<TEI.2>
<teiHeader>
<!-- ... -->
<language id="GRG" wsd="myWSD">
<!-- ... -->
</teiHeader>
<text lang="GRG">
<!-- ... -->
</text>
</TEI.2>

This example begins by including the TEI prose tagset in its XML version. This is followed by a notation
declaration for the WSD notation itself, and the declaration of an unparsed XML entity calledmyWSD
which is resolved to the SYSTEM filemyWSD.xml and which uses the WSD notation. The notation itself
must be declared in order that it may be referenced on the subsequent entity declaration, (or declarations,
if more than one writing system is in use). All these declarations are located in the DTD subset. In the
document proper, the Header contains a<language> element, with the identifierGRG, which references
the WSD entity by means of the entity namemyWSD. The<text> element supplies the identifier of that
language on itslang attribute to indicate that, by default, all the component elements of the document use
that language and hence also that Writing System.

25.7 Predefined TEI WSDs
The Text Encoding Initiative has defined several writing system declarations to demonstrate the features
of the system. These include WSDs for most modern European languages, for common transcription
systems such as TLG Beta code, and for the International Phonetic Alphabet.

A list of the Writing System Declarations released with the current version of these Guidelines is given
below in chapter37Obtaining TEI WSDs

The standard TEI writing system declarations are expected to meet the needs of many encoders; some,
however, will need to prepare new WSDs to describe character-encoding schemes not included in the
standard WSDs.

25.8 Details of WSD Semantics
This section describes the meaning of the WSD in more formal terms than have been used elsewhere in
this chapter; it can be skipped by most readers, but should be read carefully by those who wish to write
complex writing system declarations or to implement software to process writing system declarations or
to interpret them in the processing of TEI-conformant documents.

TEI Consortium 598 March 2002

25.8 Details of WSD Semantics

25.8.1 WSD Semantics: General Principles
A writing system declaration provides a complicated bundle of mappings:

• a 1:1 partial function from strings in given coded character sets to character forms

• a function from entity names to character forms, and therefore derivatively a function from
entity names to strings

• a function from character forms to characters, and therefore derivatively:

– a function from strings to characters

– a function from entity names to characters

• a relation between UCS-4 codes and character forms

• a function from UCS-4 codes to characters

To ensure that the relations described as functions are in fact functional, the following constraints apply
on the WSD:

• No two <form> elements can have the same values for bothcodedCharSet andstring. Since
usually there is only one<codedCharSet> used as a basic component, this usually means
eachstring attribute value must be unique in the WSD.

• No two<form> elements can name the same entity in eitherentityStd or entityLoc. It is legal,
though pointless, for bothentityStd andentityLoc on the same<form> element to name the
same entity.

• More than one<form> element may have the sameUCS-4 value, but if so they must be within
the same<character> element.

These constraints may be summarized thus: one ‘character’ (however the creator of the WSD defines
a character) can be associated with more than one byte string, entity name, or UCS-4 code, but any
single byte string (given a specific coded character set), any single entity name, and any single UCS-
4 code must be associated with only one single<character>. One can, for example, associate both
“tilde” and “logical not” with a<character> meaning “logical negation”, but one cannot associate both
a <character> called “tilde” and one called “logical negation” with the ASCII character 7/14: given a
7/14 in the text, it must be unambiguously clear whether the character is a “tilde” or a “logical negation”.
If one wishes to retain the ambiguity, one must define a<character> called (for example) “logical-
not or tilde or swung-dash”. Similar restrictions apply to entity names and UCS-4 codes: each must be
associated with a single<character> element.

25.8.2 Semantics of WSD Base Components
The effects of naming coded character sets, entity sets, and other WSDs as base components may now be
defined thus:

• reference to a coded character set makes available the set of bit-pattern-to-character mappings
defined in the coded character set. That is, if a WSD refers to a coded character set, then
whenever the WSD is in use, any character in that coded character set may be used with
its standard meaning unless it has been redefined using the<exceptions> element. It is
recommended that a WSD be provided for each coded character set, to make the mappings
fully explicit.

• reference to an entity set makes available the set of entity-name-to-character mappings defined
in the entity set. It is assumed that standard public entity sets contain enough information
to count as a valid mapping; for private entity sets, the preferred method of providing the
necessary information is to define the entity set in a WSD. If for example a WSD refers to the
ISO Latin 1 entity set, then whenever that WSD is in use, any entity in that set may be used
with its public meaning, unless it has been redefined in the<exceptions> element.

• reference to a WSD makes available the set of mappings declared in that WSD; the language
and writing system direction information given in the base WSD is ignored.

March 2002 599 TEI Consortium

25 Writing System Declaration

If reference is made only to standard character sets and entity sets, there is no mechanical method of
associating the ‘characters’ involved in one mapping with those involved in another. E.g. a reference to
ISO 646 IRV provides a map from code point 5/11 to a character one might call “left square bracket”.
A reference to entity setISOpub1 provides a map from the entity namelbr to what should probably
be considered the same character. There is however no guarantee that any processing software will
necessarily be sufficiently intelligent to make this association of mappings automatically; it requires
hard-coded knowledge of the specifics of certain character sets and entity sets.

When, however, base WSDs are used to document important entity sets and character sets, it does
become possible to define mechanical methods of associating<character> elements in different base
components.

25.8.3 Multiple Base Components
When multiple bases of the same type are referred to, the effects are these:

• if more than one coded character set is named, then it is expected that character-set shifting as
described in ISO 2022 or some equivalent is in use, and proper shifting is the responsibility of
the user. All strings in the WSD must specify the ID of the proper coded-character-set base,
using thecodedCharSet attribute.

• if more than one entity set is named, then entity names from all named sets may be used as
values of theentityStd andentityLoc attributes. If the same name occurs in more than one
entity set, the assumption is made that it refers each time to the same character.

• if more than one base WSD is named, then all characters declared in all the WSDs are
available. For this case, we can define what happens to merge the different base components
more precisely than for the other types of base component:

– any two <form> elements which name the same entity or the same string in
the same coded character set are considered the same form, and are merged as
described below in section25.8.5Merger of Form and Character Elements.

– any two<form> elements which give the same UCS-4 code are considered forms
of the same<character>, and their parent<character> elements are merged.
The forms themselves may be merged or may remain distinct: if the forms have
conflicting values for any attribute, they must remain distinct; if they don’t conflict,
they may be merged, at the option of the processing software. In the general case,
there might be more than one way to perform mergers, so merger is not required.

The result of invoking multiple base WSDs is thus a merged WSD in which the<form> and<character>
elements have been merged as prescribed. If the merger is impossible because the two WSDs are
incompatible, a semantic error occurs. A set of WSDs is compatible and may be invoked together if
all of the following are true:

• any given entity name is associated with a single string (in a given coded character set) and a
single character class

• any given string or UCS-4 code is associated with a single character class

25.8.4 Semantics of Exceptions
We can now define the semantics of the<exceptions> element.

The base components provide a preliminary set of mappings, as described above. For convenience let
us call this thedefault map. The <exceptions> element allows the user to modify the default map
by defining further mappings and by overriding parts of the default map. There are three cases: a new
<character> element replaces an old one, is merged with an old one, or is added to the set without
affecting any old ones.

25.8.4.1 Case 1: replacement
If a <form> element within<exceptions> (F-new) ‘collides’ with a<form> element in the default
map (F-old), then the parent<character> element of F-new replaces the parent element of F-old. Two

TEI Consortium 600 March 2002

25.8 Details of WSD Semantics

<form> elements collide if they have the same values forcodedCharSet andstring. (N.B. if this condition
occurs within the default map, the two<form> elements are merged.)

For example, to define the TLG Beta code transliteration of alpha asa we first name ISO 646 IRV as a
base component; this has the effect of creating the following (possibly imaginary)<form> element:

<character id='A' class='lexical'>
<form string='a'>

<desc>lowercase latin letter A</desc>
</form>

</character>

We then include the following within the<exception> element:
<character id='ALPHA' class='lexical'>

<form string='a' entityStd='gkalpha'>
<desc>lowercase Greek alpha</desc>

</form>
</character>

This overrides the<character> element for latin A, and indicates that in the transliteration scheme
documented by this WSD, character 6/01 represents a Greek alpha, no matter what ISO 646 says.

25.8.4.2 Case 2: merger
If a <character> element within<exceptions> ‘overlaps’ with one in the default map, then the two
<character> elements are merged. Two<character> elements overlap if any of their<form> elements
name the same entity or UCS-4 code. (N.B. if these conditions occur within the default map, they lead
to merger either of the two<form> elements — for entity name overlap — or of the two<character>
elements.)

For example: suppose we wish to document the three-Rs transcription described in section4.2Entry and
display of characters. We name ISO 646 IRV as a base character set (or WSD) and add the following
exceptions:

<exceptions>
<character id='R' class='lexical'>

<desc>lowercase latin letter r</desc>
<form string='' entityLoc='r' ucs-4='0072'>

<desc>'normal' form, similar to modern print r and to
Cappelli, p. 318, line 2, items 3, 6, 15.</desc>

</form>
<form string='' entityLoc='r2' ucs-4='0072'>

<desc>'round' form, usually following 'o', similar
to a modern Arabic digit 2 (or to Cappelli, p. 318,
line 2, items 13 and 14)</desc>

</form>
<form string='' entityLoc='r3' ucs-4='0072'>

<desc>'small-cap' form, like a capital R but
same height as lowercase (cf. Cappelli, p. 318,
line 1, items 2 and 3)</desc>

</form>
</character>

</exceptions>

As a second example, imagine we wish to document a local entity set for Old English in which we use
non-standard short entity namest (for þ or thorn),d (for ð or eth), anda (for æ or æsc). Assuming the
TEI has provided a WSD for the Latin 1 entities, the whole WSD is this:

<writingSystemDeclaration
name='-//OTA 1990//NOTATION WSD Old English entities//EN'
date='1993-05-25'
lang='eng'>

<language iso639=''>Various</language>
<script>Latin alphabet, extended</script>
<direction lines='TB' chars='LR'/>
<characters>
<baseWsd name='-//TEI P4: 2001//NOTATION WSD ISO Added Latin 1//EN'

authority='tei'/>

March 2002 601 TEI Consortium

25 Writing System Declaration

<exceptions>
<character class='lexical'>
<form entityStd='thorn' entityLoc='t'>

<desc>lowercase latin letter thorn</desc></form></character>
<character class='lexical'>
<form entityStd='Thorn' entityLoc='T'>

<desc>uppercase latin letter thorn</desc></form></character>
<character class='lexical'>
<form entityStd='eth' entityLoc='d'>

<desc>lowercase latin letter eth</desc></form></character>
<character class='lexical'>
<form entityStd='Eth' entityLoc='D'>

<desc>uppercase latin letter eth</desc></form></character>
<character class='lexical'>
<form entityStd='aelig' entityLoc='a'>

<desc>lowercase latin aesc (= digraph aelig)</desc></form></character>
<character class='lexical'>
<form entityStd='AElig' entityLoc='A'>

<desc>uppercase latin aesc (= digraph aelig)</desc></form></character>
</exceptions>
</characters>
<note>This WSD is just to document the local entities; it should be
named as a base WSD by the actual writing system declaration.
</note>

</writingSystemDeclaration>

This has the effect of merging the<character> elements forthorn, eth, andaesc (or a-e ligature)
defined in the ISO Latin 1 WSD with those given here, which specify the local entity name. The<form>
elements may or may not be merged, so the software may or may not actually realize that the local entity
t corresponds with the UCS-4 code given in the TEI WSD for ISO Latin 1.

The full local WSD can then be this:
<writingSystemDeclaration

name='-//OTA 1993//NOTATION Old English WSD//EN'
date='1993-05-25'
lang='eng'>

<language iso639='ang'>Anglo-Saxon / Old English</language>
<script>Latin alphabet, extended</script>
<direction lines='TB' chars='LR'/>
<characters>

<baseWsd name='-//TEI P4: 2001//NOTATION WSD ISO 646 IRV//EN'
authority='tei'/>

<baseWsd name='-//OTA 1990//NOTATION
WSD Old English entities//EN'

authority='private'/>
<baseWsd name='-//TEI P4: 2001//NOTATION

WSD ISO Added Latin 1//EN'
authority='tei'/>

</characters>
</writingSystemDeclaration>

We refer explicitly to ISO Latin 1, for clarity, but in theory it has already been included in-//OTA
1990//WSD Old English entities//EN and need not be repeated. At this time, the rules for merger
would force our local<form> elements to be merged with the standard<form> elements, so the local
entity t would map correctly into the UCS-4 character set.

25.8.4.3 Case 3: expansion
If a <character> element has no<form> children which collide with anything in the default map, and
does not itself overlap with anything in the default map, then it is simply added to the default map.

For example, suppose we wish to document an abbreviation used for Old French “est” in our manuscript,
which resembles e with a tilde or macron. Since we expect we may have more abbreviations for “est”,
we use the local entity nameest1 for this one. Within<exceptions>, we declare the abbreviation thus:

<character id='EST1' class='lexical'>
<form string='' entityLoc='est1'>

TEI Consortium 602 March 2002

25.8 Details of WSD Semantics

<desc>abbreviation for 'est', lowercase latin e
with a tilde or macron above, similar to
Cappelli p. 113, col 1, items 4(a) and 8.</desc>

</form>
</character>

25.8.5 Merger of Form and Character Elements
In some cases, the<form> and<character> elements introduced notionally by reference to a coded
character set or entity set, or introduced explicitly by reference to a base WSD, may be considered as
referring to identical objects; this is calledmerger. Two<form> elements F1 and F2 can be merged if they
both have the same values forcodedCharSet andstring, or if codedCharSet andstring are unspecified
(implied) in at least one. When F1 and F2 are merged, the result is a (possibly imaginary)<form> element
(F3) the attributes of which are derived thus:

• if F1 has no value for acodedCharSet, then F3 has the same value for this attribute as does
F2. If both F1 and F2 have explicit values, the values must be identical.

• if F1 has an empty string forstring, then F3 has the same value as F2. If both have values
other than the empty string, they must be identical.

• for entityStd, entityLoc, anducs-4, F3 gets a value containing all the entity names or codes
which appear in the corresponding attribute values of either F1 or F2. I.e. the attribute values
are viewed as sets, and F3 gets the union of F1 and F2.

The children of the new element are derived by taking all the<desc> children of F1, then all the<desc>
children of F2; all the<figure> children of F1, then those of F2; all the<note> children of F1, then all
the<note> children of F2. In other words, all the children of the source elements survive as children of
the result element.

Provided that their forms are compatible, two<character> elements C1 and C2 may be merged unless
their values forclass differ. The resulting<character> element C3 has the same value for itsclass
attribute as C1 and C2, and all the children of C1 and C2 are made children of C3 (<desc> children first,
then<form> children).

Note that merger is sometimes required by the semantic rules given above, and sometimes optional.
If merger is required but not legal (because the two elements to be merged are incompatible), then a
semantic error has occurred and the two base WSDs which give rise to it should not be invoked together.

March 2002 603 TEI Consortium

25 Writing System Declaration

TEI Consortium 604 March 2002

